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Rashid Vladimir Williams-Garcia

PHASE TRANSITIONS IN LIVING NEURAL NETWORKS

Our nervous systems are composed of intricate webs of interconnected neurons interacting
in complex ways. These complex interactions result in a wide range of collective behaviors
with implications for features of brain function, e.g., information processing. Under certain
conditions, such interactions can drive neural network dynamics towards critical phase
transitions, where power-law scaling is conjectured to allow optimal behavior. Recent
experimental evidence is consistent with this idea and it seems plausible that healthy
neural networks would tend towards optimality. This hypothesis, however, is based on two
problematic assumptions, which I describe and for which I present alternatives in this
thesis. First, critical transitions may vanish due to the influence of an environment, e.g., a
sensory stimulus, and so living neural networks may be incapable of achieving “critical”
optimality. I develop a framework known as quasicriticality, in which a relative optimality
can be achieved depending on the strength of the environmental influence. Second, the
power-law scaling supporting this hypothesis is based on statistical analysis of cascades of
activity known as neuronal avalanches, which conflate causal and non-causal activity, thus
confounding important dynamical information. In this thesis, I present a new method to
unveil causal links, known as causal webs, between neuronal activations, thus allowing for

experimental tests of the quasicriticality hypothesis and other practical applications.
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CHAPTER 1

Introduction

In the universe, heterogeneity, disorder, and complexity reign supreme, and our brains are
no exception. There are on the order of 100 billion specialized cells, known as neurons,
bustling with activity in the human brain. Each of these neurons is connected via synapses
to on the order of 10 thousand other neurons[I], with which they share information, as you
might expect in a social networkﬂ For the average adult human, this means nearly a
quadrillion (i.e., 10'%) synapses. The brain is quite possibly the most complex organ in the
human body and the electrically-excitable neurons which operate within it are also complex,
belonging to a number of different neuron classes distinguished by differences in structure,

function, and morphology. The brain is a complex system.

Although no standard definition exists, complex systems tend to involve large num-
bers of heterogeneous, interconnected components interacting in non-trivial ways (e.g., via
threshold interactions, like in the case of neurons) amongst themselves and with an ex-
ternal environment. These interactions give rise to a broad range of behaviors including
catastrophic transitions (e.g., epileptic seizures, earthquakes, and ecological collapse), col-
lective phenomena (e.g., flocking and synchronization), emergence (e.g., pattern formation

and self organization), and adaptation (e.g., synaptic plasticity and biological evolution).

! As of 2016, Facebook has 1.65 billion monthly active users, with the average Facebook user having around

340 friends [2, [3].



Complex systems theory seeks to understand how these microscopic interactions give rise
to the macroscopic, qualitative behavior of these systems, in this sense complex systems is
intimately related to nonequilibrium statistical physics. Complex systems also tend to op-
erate far from thermodynamic equilibrium, have memory, and be stochastic, as opposed to
deterministic—they are ruled by the laws of probability. Constituents of complex systems
form intricate webs of interactions which readily lend themselves to a networks description.
For example, cells [4], the nervous system [5], ecosystems [6], and even the global climate [7]
have all been described in this context. These complex networks lie somewhere between
regular lattices and complete randomness: they exhibit non-trivial topologies, e.g., hubs,
communities, and hierarchical structure [§]. For example, airports and social networks form

complex networks which are commonly known to exhibit these features.

Given their complexity, these systems have eluded the mechanistic descriptions typically
found in an undergraduate-level physics course. But in the second half of the 20th century,
a glimmer of hope emerged from the ubiquitous appearance of power-law scaling in a variety
of natural phenomena: earthquakes [9], forest fires [10], solar flares and gamma-ray bursts
[11], landslides and avalanches [12], biological evolution [I3], neuronal avalanches [14], and
economic fluctuations [I5]. This signified a couple of important points which might bring
these systems together. First, the apparent power-law scaling indicates that these systems
may feature behavior which lacks a characteristic scale, i.e., they are scale-free, much like
fractals. In the case of earthquakes, for example, there are immense earthquakes such as
the 1960 Valdivia earthquake (the largest earthquake ever recorded, registering a 9.5 on
the Richter scaleEI), mediocre earthquakes such as the 2010 Indiana earthquake (registering

a 3.8 on the Richter scaleﬂ which felt more like the vibration caused by a fast moving

2«Magnitude 8 and Greater Earthquakes Since 1900”, U.S. Geological Survey, 2010.
3U.S. Geological Survey, 2010.



semi-trailer truck than a shifting of geological plates), and everything in betweenﬁ Second,
the apparent presence of scale-free behavior in these systems is important because it may
reveal some common underlying processes which give rise to the observed power laws, such
as the presence of critical phenomena.

Critical phenomena correspond to the behavior characteristic of systems undergoing a
specific class of phase transition known as a critical phase transition. Fig. shows
different classes of phase transitions, including a critical point, in a generic phase diagram.
Generally, phase transitions result from a competition between the influences of the internal
energy and entropy, which represent order and disorder, respectively—order dominates in
the ordered phase, while disorder dominates in the disordered phase. In the Ehren-
fest classification, phase transitions are grouped in terms of the analytic properties of the
thermodynamic free energy, ' = U — TS, the amount of energy which can be used to do
work, where U is the internal energy, T the temperature, and S the entropy. Phase tran-
sitions in which the first-order derivative of the free energy is discontinuous, as in the case
of the melting or freezing of water (see Fig. , are known as first-order transitions
(or discontinuous transitions), since it is the first-order derivative of the free energy which
becomes non-analytic at the transition. Similarly, phase transitions in which the free en-
ergy changes continuously, as in the case of a Curie transition (see Fig. , are known as
second-order transitions (also known as continuous or critical phase transitions), since
it is the second-order derivative of the free energy which becomes non-analytic.

Moreover, while disorder corresponds to symmetric states, the presence of order indi-
cates a broken symmetry. Consider the solid-liquid transition of water: when frozen, water
molecules form into a stable, regular hexagonal lattice (see Fig. [1.4]A), however, when

liquid, water molecules are in fluid motion (see Fig. [1.4IB). Whereas the lattice is only

4The frequency of occurrence of these events approximately satisfies the scale-free behavior described by the

Gutenberg-Richter law.
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transition, due to a similar jump discontinuity in the entropy—the size of this jump is the
entropy of fusion. Data obtained from “Dichte von Eis und Wasser” by Wikipedia user
Klaus-Dieter Keller under Creative Commons license CC-BY-SA-3.0: https://commons.
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symmetric under rotations through integer multiples of 120° and is frozen in this configura-
tion, the liquid is in constant motion and, over time, retains symmetries in the rotational
and translational degrees of freedom of individual molecules. Hence, the regularity of the
solid phase corresponds to a higher degree of order, but lower symmetry than the liquid
phase. The solid phase of water is said to be a broken symmetry state and, indeed, phase
transitions generally correspond to a symmetry breaking. An individual phase is then
characterized by an order parameter, an observable which quantifies the degree of order
in that phase; it is identically zero in the disordered phase and nonzero in the ordered
phase. A relationship between the free energy and the order parameter can be established
after considering the specific symmetries and conserved quantities involved, as is done in

the Landau mean-field theory [16].
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Figure 1.4: The structure of water is ordered into a hexagonal lattice with bond angle of
120° when frozen (A) and disordered when liquid (B). The order parameter for a solid-liquid

transition is the spatial periodicity of the molecules.



At a critical point, the response of the system to small perturbations is great and so it
can be difficult to tune a system precisely to a critical point in an experiment. This behavior
is quantified by the susceptibility, which represents the response of the system to an external
field which is conjugate to the order parameter, i.e., a field which influences the amount
of order in a systelrﬂ For example, in a ferromagnetic system where the order parameter
is the average magnetization m, an externally applied magnetic field A will influence its
net magnetization; the magnetic susceptibility, defined by x = m/h, diverges at the critical
temperature 7T, when the applied field vanishes (h — 0). Moreover, fluctuations at criticality
occur at all length scales and hence these disturbances take a longer time to dissipate, i.e.,
the correlation length £ and relaxation time 7y diverge, producing such curious phenomena
as critical opalescence and critical slowing down, respectively. In critical opalescence, a
fluid, such as water or ethanol (or alternatively a binary mixture of these or other fluids), is
brought to its critical point, at which point density fluctuations of all length scales appear,
including those comparable to the wavelengths of visible light. This situation corresponds
to a sudden onset of an opalescent, or milky, appearance to the fluid and, if allowed to move

beyond the critical point, the supercritical disappearance of the liquid-gas phase boundary.

In order to connect the power-law behavior of natural systems with critical phenom-
ena, it is important to highlight the universal properties of critical phase transitions, which
are characterized by critical exponents describing behavior close to a critical transition.
Different systems exhibiting critical transitions fall into different universality classes de-
pending on the values of their critical exponents, which are generically determined by the

system’s spatial dimension, nature of interactions, conserved quantities, and fundamental

5A quantity related to the susceptibility is the dynamic range: often used in the context of sensory organs,
it is the ratio of the largest to the smallest signals perceptible by a sensory system. Human hearing,
for instance, typically features a dynamic range of well over 100 dB, i.e., a range spanning 10 orders of

magnitude of audio power [17].



symmetries, but not any of the precise details. This means that systems within a certain
universality class, which may be qualitatively very different away from a critical transition,
behave very similarly at a critical transition. As mentioned previously, certain quantities
diverge at a critical transition, and critical exponents describe how sharply these quantities
diverge. In the case of the magnetic susceptibility, the critical exponents are v and 7':
X x (T'—T.)~7 for temperatures T' > T, and y o« (T, — T)_Vl for temperatures T' < T,
where T, is the critical temperature. Critical exponents are often related by simple scaling
relations; scaling relations which also involve the dimension of the system are known as

hyperscaling relations.

To study critical transitions and their associated phenomena (and indeed any physical
phenomenon), it is best to start with an analytically tractable, minimal model encapsulating
the behavior of the physical system. For example, the Ising model suitably describes the
equilibrium Curie transition, in which a ferromagnet loses its magnetism as its temperature
T is increased. In the two-dimensional Ising model, spin magnetic moments, which can
either be pointing up (4+1) or down (—1), are located on the vertices of a square lattice
in which they are only allowed to interact with their four nearest neighbors. The sum
of all the lattice spin values corresponds to the magnetization. At temperatures below
the critical point 7,, neighboring spins tend to align, inducing a nonzero magnetization;
this is the ordered ferromagnetic phase. For T > T,., entropy causes spins to no longer
tend to align and the magnetization averages to zero; this is the disordered paramagnetic
phase. Indeed, the order parameter here is the magnetization. As an example of the utility
of universality, the three-dimensional Ising model shares a universality class with simple
liquid-gas transitions, with lattice sites being interpreted as molecules instead of spins: a
+1 indicates the presence of a molecule and a —1 indicates an absence. The order parameter

is related to the average number of molecules per lattice site, i.e., the density.



Equilibrium systems like the one described in the Ising model are, however, the ex-
ception, not the rule, and as I have already stated, we are interested in nonequilibrium
systems. The distinction between equilibrium and nonequilibrium systems can be under-
stood in terms of flows of energy, particles, or other conserved quantities between the system
and a reservoir, i.e., an environment; at equilibrium, the net flow is zero. Consider your
cup of coffee: the moment you pour coffee into the cup, the liquid is alive with turbulent
motion due to kinetic and convective forces, and thermal energy from the coffee begins to
flow to the relatively cold cup. Of course, all this is happening while the coffee transfers
energy and matter to the surrounding air in the form of steam; the coffee is out of thermal
equilibrium. After a sufficient amount of time, however, the turbulent motions of the coffee
cease, the coffee is cold, and so is the cup; the coffee has reached thermal equilibrium. The
nonequilibrium state described above is transient, only lasting while the cup approaches

thermal equilibrium.

Biological organisms actively exchange matter and energy with their environments to
maintain a state of nonequilbrium we call life. In the brain, individual neurons are kept from
equilibrating with their surroundings by transmembrane proteins and ionic pumps which
use chemical energy to maintain chemical and electrical gradients between the intracellular
and extracellular media. Their central function involves summing up (or integrating) the
influences from other neurons up to a threshold, at which point they produce an action po-
tential, which then propagates throughout the neural network for other neurons to process.
This neural processing approximately falls under a key universality class of nonequilibrium
phase transitions known as directed percolation [18| 19]. To explain directed percolation,
another cup of coffee is in order: let us consider the process of pulling an espresso shot.
High-temperature water is forced through a densely-packed puck of ground coffee at high

pressure; as the water percolates through the puck, it becomes espresso. The percolation

10



transition is complete when the espresso traverses the width of the puck. This process is
irreversible in that once the water has passed across a grain of ground coffee and extracted
the caffeine, there is no going back; the entropy of the universe has increased. Because the
system features microscopic processes which are irreversible, it is said to lack a detailed
balance—a characteristic feature of nonequilibrium systems. A bond percolation model
can be used to describe the transition, with grains of coffee sitting at the vertices of a regular
lattice. As the water begins to flow through the puck, each vertex is irreversibly connected
by a directed edge (an arrow) to a neighbor with probability p and the percolation transition

occurs at a critical value p. (see Fig. [1.5).

As with the equilibrium case, nonequilibrium critical transitions also feature universal
critical behavior and some of the same approaches used in equilibrium situations can be ex-
tended to nonequilibrium transitions. The theory of equilibrium and nonequilibrium phase
transitions is presented along with detailed descriptions of the Ising and directed percolation
models in Chapter [2| while keeping a focus on the external field (i.e., the environment), and

its influence on the presence of a phase transition.

Because of the feature of universality, the idea that many natural systems are operating
at a critical phase transition is an alluring one, since we need only determine the appropri-
ate universality class to describe their behavior. It can be difficult, however, to bring an
experimental system to criticality and this critical state is even harder to maintain due to
fluctuations associated with criticality. If natural systems are always operating at criticality,
some mechanism must be at play, which allows for criticality in the absence of fine-tuning.
It was proposed that in such systems, criticality emerges from the intrinsic dynamics, i.e.,

they self-organize to criticality.

To determine the features necessary to exhibit self-organized criticality (SOC), a

simple model, the Bak-Tang-Wiesenfeld (BTW) sandpile model, was put forth in Per Bak

11
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et al.’s seminal work [20]. In the two-dimensional case, grains of sand are dropped one at
a time on random lattice sites on a two-dimensional lattice and a pile of sand begins to
emerge. When the sand pile at a given site reaches a threshold height, the pile topples,
spilling its grains onto neighboring sites, potentially inducing further topplings. Successive
topplings are thus causally related, with each new toppling having been induced by another
which came before. Together, these topplings form a spatiotemporal event known as an
avalanche, with the size of such avalanche events being given by the number of sand
grains which have toppled. If the slope of the pile is too shallow, small avalanches will be
typical; if the slope is too steep, however, large avalanches will dominate. As this process
is repeated, the pile eventually reaches a steady, nonequilibrium state, self-organizing to a
critical slope where, as additional grains are dropped, avalanches of all sizes will be observed;
the avalanche size probability distribution exhibits power-law scaling, as one would expect
at criticality. It is important to note that the grains are dropped at an infinitesimally slow
rate such that the relaxation timescale, i.e., the duration of the avalanches, is much shorter
than the time between grain drops. This separation of timescales is essential to the

framework of SOC [21].

One of the many applications of the SOC framework is in understanding the complex
networks of the nervous system [2I]. Over the past twenty years, there have been a large
number of theoretical and experimental attempts to connect activity in living neural net-
works to critical avalanches like those seen in the BTW sandpile model [20, 22]. Where
we would have spoken of avalanches of sand grains in the BTW model, in a neural net-
work avalanches correspond to cascades of spreading neuronal activation. And where in
the BTW model, the ordered (disordered) phase may have corresponded to large (small)
avalanches, in a neural network, the ordered (disordered) phase corresponds to cascades

which are amplified (damped).

13



Indeed, SOC is an alluring idea not only because it could unify a seemingly disparate
set of natural phenomena, but also because it brings up and potentially answers questions
about why these systems are operating at criticality to begin with. Biological systems, for
example, may have evolved to operate at a critical point to enhance their performance.
Theoretical and numerical simulation work has suggested that neural networks poised at
a critical point would feature optimal information transmission [14], information storage
[23, 24], computational power [25 26], dynamic range [26] 27, 28 291 B0, 31, B2], B3], and
learning capabilities [34], while providing flexible, yet stable dynamics [23, B5]. Several
experiments claim results consistent with these predictions [36, 37, B8], lending plausibility
to the criticality hypothesis of brain functiorﬂ To understand intuitively why a critical
point may optimize the flow of information, consider the diverging correlation length at
criticality; this is the point at which a signal introduced at one part of the system is most
likely to be faithfully propagated through the entire system, whereas the signal would be
lost to noise away from the critical point. Homeostatic mechanisms have been hypothesized
to tune the brain to operate near a critical point [40, 41 [42], 43, [44].

These results are consequences of the discontinuities and power-law scaling associated
with critical transitions. Note, however, that the appearance of power laws in these sys-
tems does not guarantee that the underlying physical system is critical; it is a necessary, but
insufficient condition for criticality. In living neural networks, power laws may arise inciden-
tally, in the absence of criticality, due to a filtering of electrical signals through extracellular
media [45], stochastic dynamics [46], or undersampling effects [47]. There are also inherent
problems in identifying power laws: a system’s proximity to a critical point [4§], inherent
difficulty in identifying true power laws [49, 50], not to mention the finite sizes of living

systems, which prevents true singularities in quantities such as the susceptibility—although

SGenerally, the criticality hypothesis states that “living systems will self-organize to operate near a critical

point” [39].
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this last point can be addressed by performing a finite-size scaling.

In Chapter (3] I elaborate on the framework of SOC, the BTW model, and a neural
network analog of the BTW model, known as the cortical branching model (CBM) [14].To
the uninitiated, my implementation of the CBM [19] might seem naive at best, however, the
model relies on a physical interpretation of probability. If we are talking about flipping a
coin or rolling a die, a large number of variables affect the outcome: every molecule colliding
with the volant object, its shape, the air resistance, temperature, pressure, etc., all affecting
it in minuscule and imperceptible ways, which accumulate to produce qualitative changes
in the outcome. But this process, due to its complexity, is shrouded in mystery—we are
a priori unable to predict the outcomes—and so instead of burying our heads deep in the
thicket, we assign probabilities. In this sense, the assignment of probability corresponds to
a lack of knowledge: there is a “black box” in our possession, producing some outcome every
time we interact with it, which is only predictable in a statistical sense, if at all, i.e., after
many, many measurements. In my implementation CBM, neurons are modeled as “black
boxes” which produce an outcome, i.e., an action potential, stochastically, depending on

their state and the state of the network of which they are part.

The CBM represents individual neurons as stochastic elements (called nodes) embedded
on a directed graph whose edges correspond to the axons and dendrites of a living neural
network. Each node can be in a number of integer-valued states z € {0,1,2,3,...} repre-
senting neuronal quiescence (z = 0), firing of an action potential (z = 1), and refractory
states (z > 1). A node becomes active stochastically due to the influence of its neighbors,
i.e., its afferents, which are represented by directed edges pointing towards the node—the
strength of the connection is represented by an activity transmission probability: the higher
the probability, the stronger the connection. Note that actual neurons are quiescent until

their membrane potential reaches a threshold voltage, at which point they fire an action po-
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tential, before returning to quiescence after a brief refractory period—the CBM represents
a sort of coarse-graining of these details, a metaphor for true neural network dynamics.
Despite its simplicity, the CBM has been successful in reproducing statistics of neuronal
avalanches in living neural networks, demonstrating power-law scaling, and thus potentially

critical dynamics.

A single event can be used to trigger a neuronal avalanche, which is allowed time to
terminate before another avalanche is triggered. In this way, the CBM is said to be slowly
driven and interaction dominated, thus maintaining the separation of timescales necessary
for SOC [51]. When the average synaptic strength is small, the CBM exists in a phase where
neuronal avalanches are quickly extinguished; when the average synaptic strength is great,
neuronal avalanches continue for a long time and may not terminate. A transition occurs at
an average synaptic strength corresponding to an average number of descendant activations
equal to 1—this is described by a branching parameter, x. Using a mean-field approx-
imation, an analytical description of the transition can be explored in the thermodynamic
limit, i.e., in the limit that the system size is infinitely large. The order parameter is the
density of active nodes and the corresponding dynamical susceptibility diverges at k = 1, as
suspected. Moreover, the mean-field critical transition belongs to the mean-field directed

percolation universality class [19].

Many complex systems, including living systems, however, cannot be said to be slowly
driven or interaction dominated, meaning a lack of a separation of timescales, and thus no
SOC. External environments do not wait for the fluctuations in a system to cease before
continuing their influence the system—the influence is ever-present—and so the driving and
interaction timescales are not at all separate. At all times, the brain is under the influence
of its environment and this has a drastic effect on its behavior which cannot be ignored,

e.g., touch, sound, the diurnal cycle which controls our circadian rhythms, or even our
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gut microbiota, which has been shown to influence our cognitive functions [52]. This is
analogous to the cooling coffee cup exchanging energy with the thermodynamic heat bath
of a room. To model these influences, a generalized version of the CBM is presented in
Chapter [4, where nodes are allowed to become active spontaneously with some probability.
This turns out to be a useful generalization, since spontaneous activations can also model
intrinsic properties of neurons, e.g., neurons which are tonically active can be modeled
as nodes with high spontaneous activation probabilities and distributions of spontaneous
events with means corresponding to the neurons’ average firing rates. The result of including
this influence is a loss of the critical point, which is replaced with a cross-over region where

the dynamical susceptibility no longer diverges [19].

As a consequence of not having a separation of timescales due to external influences and
their definition, neuronal avalanches may conflate unrelated events, which may confound
their statistics. For example, consider an ongoing avalanche during which an environment
introduces additional activations or two distinct avalanches which are joined only inciden-
tally due to a spontaneous activation which occurs between them. The size distribution will
consequently contain additional avalanches of larger size which do not reflect the underlying
dynamics. An even more confused situation will arise if interactions feature delays, as they
do in neural networks with synaptic delays. These issues call for a more meticulous analysis
of neural network dynamics, which considers causal relations between activations. Such
causal relations can be made by considering the network structure and synaptic delays, and
the resulting set of causal relations form intricate descriptions of neuronal cascades, which
we have named causal webs, or c-webs. An added benefit of this analysis is the separation
of exogenous events caused by outside influences from those which are endogenous and due
to the network structure and internal dynamics. That is, we are now able to measure the

spontaneous activation probability from experimental data. This is a key step in being able
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to characterize what is called dynamical disorder in a living neural network—we can
now measure how this external influence changes with time or with certain stimuli, how
different neurons feature different spontaneous activation probabilities (e.g., tonically firing
neurons), and, potentially, what the sources of these spontaneous activations are. Moreover,
we can use this information to improve simulations of living neural networks and test the
quasicriticality hypothesis. I describe causal webs, their properties, and the method used
to determine them in Chapter 6| Finally, I outline the impact my work has made on the

field and present additional questions for future research in Chapter [6]
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CHAPTER 2

Elements of Phase Transitions

Presented here is the theory of second-order (i.e., critical) phase transitions in the context
of magnetic spin and percolating systems to address equilibrium and nonequilibrium sit-
uations, respectively. The typical model used to describe equilibrium critical transitions
is the Ising model, which presents a simplified picture of a ferromagnet. In this picture,
atoms—each of which feature a spin degree of freedom—are arranged on a simple, regular
lattice, interacting only with their respective nearest neighbors, and an externally-applied

magnetic field.

The Ising model represents an equilibrium magnetic system at a fixed temperature and
can be solved exactly in up to two dimensions, although I will only review mean-field
approximations here [16]. Prior to the development of exact solutionsﬂ various methods
were developed to approximately solve the two-dimensional Ising model. One of these
focuses on the behavior of a single atom under the influence of a mean field, i.e., the
averaged (or mean) behavior of the rest of the system. In this way, a solution can be found
which is analytical and exhibits the same symmetries as the original system. I describe
an additional mean-field approximation based on the fundamental symmetries of the Ising
model to produce the same results. The mean-field approach yields behavior which is

equivalent to that of the original system in the thermodynamic limit, i.e., in the limit of

'Based on the transfer matrix method developed by Lars Onsager in 1944 [53].
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an infinite system size. I have placed the emphasis on mean-field approximations, as this
approach can be fruitfully applied to more complex models presented later in Chapter [}
I also highlight the influence an external magnetic field has on the presence of a critical
point. As part of the analysis, I derive the critical exponents 3, v, and ', corresponding to
the scaling behavior of the magnetization m(7) and magnetic susceptibility x(7') near the
critical temperature T' = T.: m(T) o (T, — T)? and x(T) o (T, — T)~" for T < T, as well

as X(T) < (T —=T.)™ 7 for T > T..

In Section I describe a model of directed percolation (DP), which exhibits a nonequi-
librium critical phase transition, and present a simple mean-field approximation [54]. Whereas
in the Ising model, fauzr dynamics may be performed, e.g., via Monte Carlo methods, to
arrive at a distribution of states satisfying the equilibrium canonical ensemble, in DP, we
must simulate the actual dynamics. Moreover, instead of having a time-independent Hamil-
tonian, we must rely on a master equation; DP is a type of reaction-diffusion process in
which, e.g., wet lattice sites interact with dry ones to produce additional wet sites with
probability p. DP belongs to one of the most important universality classes of nonequi-
librium phase transitions, and which bears its name: the DP universality class. The
phase transition exhibited by DP at a critical value p = p. separates an absorbing phase
from an active phase. The absorbing phase is akin to the previously-described equilibrium
disordered phases, so named because such a system is unable to escape the absorbing phase
once it has been reached; this is intimately related to the irreversibility of nonequilibrium
processes. For example, if the system starts with a single active site which does not propa-
gate its activity, then the system remains inactive. In the active phase, however, active sites
will produce further activation and activity tends to grow with time; such a nonequilibrium
phase is analogous to the equilibrium ordered phase. Both active and absorbing phases may

feature fluctuating dynamics, e.g., avalanches.
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Nonequilbrium phase transitions also feature critical behavior and universality, but with
additional critical exponents which involve the passage of time ¢, e.g., those associated with
the correlation time, & o (p — p.)”", and the growth of the spatial correlation length,
€1(t) x t1/% where z is the dynamical critical exponen These exponents also have
corresponding scaling relations, e.g., z = vy /v, where v is associated with the correlation
length, £, « (p — p.)”+. An alternative set of exponents associated with features of the
fluctuations may be used, e.g., 7, which is associated with the size of an active cluster. The
Janssen-Grassberger conjecture [55 56] speculates that a model should belong to the

DP universality class if
1. there is a continuous transition separating the absorbing and active phases,
2. the transition is characterized by a non-negative, single-component order parameter,
3. the interactions are short-ranged, and

4. there are no unconventional symmetries, conservation laws, or quenched randomness.

2.1 Equilibrium Transitions: The Ising Model

Consider a two-dimensional square lattice whereupon atoms are organized on the vertices
and bonds between atoms are represented by edges. At each vertex i, a magnetic spin
s; associated with the atom at that site can be either up or down, i.e., s; € {—1,+1},
representing a degree of freedom with bond interactions which respect a Zo symmetry.

In a ferromagnet, neighboring spins align to minimize the thermodynamic free energy;
in the case of an antiferromagnet, adjacent spins prefer to anti-align. There is hence an

energy cost associated with each pair of spins (7,j) in a ferromagnetic system, which is

2The dynamical critical exponent z dictates the divergence of the relaxation time at criticality, 7o o £%, a

phenomenon otherwise known as critical slowing down.
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modeled as —Js;s;, where J > 0 is the coupling strength. When s; = s;, the energy cost
is minimized; whereas if s; # sj, the cost is greater than zero—an unfavorable situation.
Indeed, for each configuration of spins {s;}, there is an associated energy cost H = F'[{s;}].
In the Ising model, we write this cost as the Hamiltonian
N
H=-— Z Jijsisj — Z his;, (2.1)
(4,5) i=1
where the first sum is taken over all pairs of neighboring spins and N is the total number of
lattice sites. Generally, the interactions .J;; may be random variables, but for simplicity, we
will consider J;; = J for all spin pairs (i, j). We have also here included an external field h
which causes spins to align toward it. I will forgo a description of Onsager’s exact solution
in favor of describing two important mean-field approaches in the following sections. A
complete description of Onsager’s exact solution as well as approximation methods beyond

the mean field, such as the Bethe-Peierls approximation, can be found in [16].

2.1.1 A Mean-Field Approximation

In the mean field, we focus our attention to a single spin at site ¢ and its nearest neighbors
7, which we consider to feature only small deviations from the mean magnetization m, i.e.,
m ~ (s;j). The Ising Hamiltonian (Equation thus becomes
N
H =~ —(sz—l—h)Zsi, (2.2)
i=1
where z is the coordination numbeIE| and we are assuming a translational invariance such
that H ~ ), H;. Each spin is essentially treated independently since we have removed all
interaction terms between spins and replaced them with an effective field, given by Jmz,
which surrounds each spin. We can now calculate the magnetization m, by solving the

self-consistent relation stating that m = (s;), where the angled brackets correspond to a

3Not to be confused with the node dynamical state variable z, which we introduce in Chapter
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thermal average over all possible configurations of the spin s;, i.e.,

Z s; eB(sz—s—h)si

1 . =+1
—_— . _BHz p— Si
m= A Z i€ - Z eB(Jmz+h)s; ’ (23)
==+l s;=*+1

where Z is the partition function, 5 = 1/kgT (not to be confused with the critical exponent
B), with kp being the Boltzmann constant (which I will typically take as 1, for simplicity),

and T is the temperature. Evaluating the sums, we arrive at the equation of state
m = tanh B(Jmz + h), (2.4)

a transcendental equation which can be solved numerically (see Figure . Solutions
correspond to intersections between the black line (y = m) and the colored curves (y =
tanh 8(Jmz + h)), with stability determined by the slope of the colored lines at a crossing.
The situation in the absence of an external field, i.e., when h = 0, is presented qualitatively
in Figure 2.IJA. When 8Jz < 1, the only stable solution is m = 0. When 3Jz > 1, three
solutions appear, but only the non-vanishing solutions are stable and the system converges
to one of these depending on the starting conditions, i.e., whether h = 0 is approached from
below (h — 07) or above (h — 0T). This situation is known as a spontaneous magnetization;
the magnetization suddenly becomes nonzero as the temperature reaches T, (see Figure .

To determine values of the mean-field critical exponents, we need not exactly solve the
self-consistent relation in Equation [2.4] since we can limit our analysis to behavior near
the critical temperature T, = Jz and in the limit &~ — 0 (since this is necessary to observe
critical behavior, as I have demonstrated). At this point, m =~ 0 and so we can expand the

relation in this limit, thus yielding
1
m = fJmz — g(ﬁsz)S + O(md). (2.5)

Considering only terms up to third order in m, we arrive at

1 Jz =T
mea — .
BJz Jz
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Figure 2.1: Solutions to Equation correspond to intersections of the black and colored
lines. A. When h = 0, the m = 0 state is viable so long as 8Jz < 1, but a spontaneous
magnetization appears as 5Jz is increased. B. When h > 0, the colored curves are shifted
by Am = h/Jz, and so the m = 0 state represents a solution only asymptotically in the

limit T — oo; the phase transition has been eliminated by the influence of the environment.
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When T' = T, Jz = 1, and we arrive at the desired scaling behavior m(T) oc (T, — T,
where 8 = 1/2, not to be confused with the inverse temperature 5. Note that this is only
valid for T' < T (see Figure [2.2)).

In the disordered phase (T' > T.), a magnetization emerges in response to an externally-
applied magnetic field, quickly growing near 7.. This behavior is quantified by the mag-
netic susceptibility, x, which diverges at the critical point (see Figure 2.2B). It is defined

through the relation m = yh + O(h?), or alternatively,

X (2.7)

= on
which quantifies the receptiveness of the system to an infinitesimally-small, externally-
applied magnetic field h. Evaluating the equation of state (Equation near the critical
point, i.e., with m ~ 0 and h =~ 0, we arrive at m = $(Jmz + h) + O(m3). Then, applying

the corresponding relation m = yh:

LB 1
T1-8Jz: T-T.

X (2.8)

and so the value of the critical exponent is v = 1 for the case T" > T.. To evaluate the
critical exponent ' corresponding to the behavior of the susceptibility below the critical
point, i.e., for T' < T,, we differentiate Equation with respect to h, and take the limit

h — 0 to solve for x:

B Bsech? BJmz
= 1 — BJzsech? BJmz’

(2.9)

Approaching the critical point from 7" < T., the magnetization takes the form given in
Equation but is nearly zero in the vicinity of the critical point, and so, to second-order

in m, the above expression becomes

B = (BImz)?)
X187 — (BIm2)?)

(2.10)

Finally, we have the scaling behavior:

(2.11)



Figure 2.2: A phase transition in the Ising model is allowed only when h = 0. When h # 0,

the critical transition is replaced with a crossover region.
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where we have employed the approximation SJz ~ 1 on account of being in proximity of

T, = Jz, thus giving the value of the critical exponent v/ = 1.

The Crossover Region and the Equilibrium Widom Line

In the presence of an external field, i.e., when h # 0, the situation changes dramatically
(see Figure ) If the field A > 0 is strong enough, prior solutions corresponding to
m < 0 are no longer viable, and the only solutions correspond to m > 0 (see Figure )
As a consequence, the state corresponding to m = 0 is no longer allowed, and thus the
critical transition at T = T, disappears, being replaced by a crossover region wherein
the magnetization gradually changes from m =1 at T'= 0 to m = 0 asymptotically as T’
approaches infinity (see Figure ) Similarly, the magnetic susceptibility no longer di-
verges, although it still features a peak at temperatures T;,(h), depending on the magnitude
of the external magnetic field h; these temperatures define an equilibrium Widom line
separating ferromagnetic-like, for T' < Ty, (h), from paramagnetic-like, for T > T, (h), states
of the system. We can find an equation for the Widom line by extremizing the susceptibility

in Equation with respect to the temperature T. Using Equation [2.4] we arrive at the

expression
om Bsech? B(Jmz + h) (2.12)
Oh 1 — BJzsech?B(Jmz+h)’ '
which we maximize, yielding a transcendental equation for the Widom line, T, (h):
h h
T(h) = 2(Jmz + B) tanh 22 T L 7 geen? T2 (2.13)

Tw(h) T (h)
2.1.2 Landau Theory

In 1937, Lev Davidovich Landau presented a general model of second-order phase transi-
tions, which demonstrates the power of symmetry arguments in the context of understanding

critical transitions [57]. In this variation on the mean-field approximation, the free energy
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f can be written as a series expansion in powers of the magnetization m so long as we are
close to the critical point, where m = 0. Due to the global Zy symmetry in the Ising model,
flipping the signs on all the spin should cause no change in the free energy, and so the free

energy should involve only even powers of m,
f=fo+am®+bm*+ .., (2.14)

where fy, a, and b are constants independent of m. Thermodynamic equilibrium corresponds
to a state of minimization of the free energy; if b < 0, then the minimum f would be at

m — 400, presenting an instability. Minimizing the free energy with b > 0 gives two

i”_ng’ fora <0
= (2.15)

0, fora >0

possible equilibrium states:

m

From this we can gleam that a o« T'—T, and that, hence, the critical exponent § = 1/2—
recall that m o (T — T,)? close to the critical point. Note that when a < 0, only one of
the two available minima is actually realized, and so the Zs symmetry is broken, whereas it
is preserved when a > 0 and the system is in the disordered state: this is an example of a
spontaneous symmetry breaking (see Figure ) To obtain critical exponents v and

~', we compute the magnetic susceptibility , which is defined as
(2.16)

where h is the external magnetic field. Recall that x o« (T — T.)”7 for T > T, and

x x (T, — T)_W/ for T' < T.. We hence modify the Landau free energy expansion as follows
f=fo—hm+am®+bm* + .., (2.17)

where you will notice that the presence of an external field breaks the Zo, symmetry from

the outset, tilting the free energy, and favoring alignment of the spins with the external
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Figure 2.3: A. Landau free energy f — fy plotted against the Landau order parameter m
with b > 0. A spontaneous symmetry breaking occurs when a = 0, at which point the free
energy acquires two minima, as a is decreased. B. Landau free energy f — fy with a < 0
and external field A > 0. The Zy symmetry in this ordered equilibrium state is explicitly

broken in the presence of the external field; notice the lower minimum on the right.
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field; this is an example of an explicit symmetry breaking (see Figure ) We thus
have
of

S = —h+2am + 4bm? = 0, (2.18)

which after differentiating with respect to h gives

om 1

_— 2.1
Oh  2a+ 12bm? (2.19)

Because we are interested in the h — 0 limit, we utilize the zero-field equilibrium mag-
netizations given in Equation to find v = 7/ = 1. These agree with the mean-field

exponents found in Section [2.1.1

2.2 Nonequilibrium Transitions: Directed Percolation

Directed percolation refers to the phenomena associated with the movement of fluids through
porous media, i.e., filters [54]. The paradigmatic model for this kind of phenomena involves
a network of nodes and edges connecting the nodes. Nodes represent pores in filters and
edges represent channels connecting pores. Due to irregularities in the filter, these channels
may be blocked or open, and so in the model, edges are open with a probability p (see Figure
2.4/A). This is describing bond directed percolation, which features an irregular lattice
topology upon which the dynamics can play out. We might want to ask how p influences the
macroscopic permeability of the filter. As the number of pores approaches infinity, i.e., in
the thermodynamic limit, a continuous phase transition occurs at a value p = p. separating
a phase where the filter is permeable and another where the filter is not.

Unlike the equilibrium Ising model, where the Hamiltonian is known and is a constant
of the motion, directed percolation is a nonequilibrium model which evolves in time, i.e.,
there are dynamics and no guarantee of detailed balance; the number of “particles” and

the energy are allowed to vary. Such a model is best described by the reactions which take
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Figure 2.4: Bond directed percolation. A. Percolation of a fluid through a filter is rep-

resented by a triangular lattice with vertices representing pores and edges representing
channels between pores. Channels have been randomly closed (dashed lines) or left open
(solid lines) for particles (solid circles) to diffuse along; particle diffusion is represented by
arrows. B. The allowed reactions are particle removal (A — (), coalescence (24 — A), and

particle production (A — 2A4).
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place within it and this is done with a master equation and to construct such an equation,
we must be familiar with the involved reaction rates. Generally, we can write a master

equation as

=Y (W(z = 2)P(z) - W(z = 2)P(x)), (2.20)

where W(z — z) and W(z — z) are the transition probabilities into and out of state x
from another possible state z, some of which may depend on the probabilities P(z) and
P(z), depending on the reaction. The probabilities P(x) and P(z) to find the system in
states x and z, respectively, may be used to approximate corresponding population densities
in a mean-field treatment. The master equation can thus be used to describe population
dynamics for each of the involved species z. Because the movement of fluid through the filter
is what we are interested in, the “involved species” are the wet sites A, which we interpret
as particles undergoing reaction-diffusion processes: particle removal A — (), in which
a site with no open outbound channels becomes wet, and thus cannot wet any additional
sites; coalescence 24 — A, in which two wet sites propagate to a single site, but only one
particle is allowed per site (a site cannot be doubly wet); and production A — 2A, where
a single wet site produces two additional wet sites through its open outbound channels (see
Figure ) To each of these situations, we assign reaction rates to arrive at an expression
describing the particle density p = P(A) as a function of time ¢. We next develop the

master equation in the mean field.

2.2.1 Mean-Field Directed Percolation

In the mean field, we assume translational invariance and approximate state probabilities
by the appropriate particle densities. We are interested in the density of wet sites P(A)

and evaluate Equation by considering each of the ways a site can become wet:

00 ipolt) — o (t) — prep(0) + (1= (D) (2:21)
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where p, is the particle production rate, u, the particle removal rate, and p. the rate of
coalescence; I have included here an external field h conjugate to p(t) to allow for a treatment
analogous to that presented in Section From this expression, we determine fixed points
p*, corresponding to long-term behavior of the differential equation, to characterize the
phases of the model and perform a stability analysis to determine the location of the phase

transition. We determine fixed points of the differential equation by setting d;p(t)| ()= = 0

and solving for p*:

T—h:l:\/4gh—|-(h—7‘)2’ (2.22)

29

P =
where 7 = p, — ptr, g = po. Stability of the fixed points is also determined in the usual
way by taking the derivative of the right-hand side of Equation with respect to p(t),
evaluating the resulting expression at p(t) = p’, and determining the sign of the resulting

expression. When h = 0, we find

0, when 7 < 7
pf = (2.23)

T7/g, when 7 > 7,

with 7. = 0. We have thus identified the absorbing phase where p* = p* = 0 and the
active phase where p* = p = 7/g, and the control parameter 7 with which we can find our
system in these phases. When h # 0, the only stable fixed point is p7, i.e., the absorbing
phase has disappeared and only an active phase remains for all values of 7. In analogy to
the definition of the magnetic susceptibility given in Equation 2.7, we write the dynamical

susceptibility as

.. Op
o= 5 (239
Using
%:_i 1 29+ (h—17) (2.25)
oh 29 dgh+ (h—1)2)°

we arrive at y o |7|7!, and so the value of the associated mean-field exponents is v = 7' = 1.

We have thus determined that the absorbing phase transition occurs at 7 = 7. with
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order parameter p* when h = 0. The mean-field critical exponent /3 is determined directly
from Equation where we note that p* oc (pp — )P for Hp > fir, and thus g = 1.

As in Section [2.1] we find here that the dynamical susceptibility still features a peak
when h # 0, finding a nonequilibrium Widom line given by 7,,(h) = —h. We have thus
presented the meaning of critical phase transitions in both equilibrium and nonequilibrium
systems, demonstrating that our equilibrium analysis can be extended to nonequilibrium
systems—a nontrivial result. We will employ these concepts in subsequent chapters as
we examine nonequilibrium neural network models in both weakly-driven (h = 0, as in

self-organized criticality) and strongly-driven (h # 0, as in quasicriticality) regimes.
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CHAPTER 3

Self-Organized Criticality

Self-organized criticality (SOC) is a framework which has been proposed to explain the ubig-
uitous scale-free behavior observed in a large variety of natural phenomena. These systems
were purported to self-organize to critical points, such as those presented in Chapter [2] via
interactions between their elements and their intrinsic dynamics. In other words, a critical
point served as an attractor of the dynamics of these systems. In the context of neural
network dynamics, the SOC framework was used to develop the criticality hypothesis,

which has been stated as

“Living systems will self-organize to operate near a critical point.”

The criticality hypothesis had been based on simulation and modeling work which pre-
dicted such behavior as well as experimental evidence which appeared to support it [39]. In
this chapter, we will review two models which exhibit nonequilibrium critical phase tran-
sitions, the first of which does so within the framework of SOC. The Bak-Tang-Wiesenfeld
(BTW) sandpile model describes the emergence of a critical slope in a growing pile of
sand, and serves as a “hydrogen atom” of SOC, i.e., a simplified, analytically-tractable toy
model. Other models exhibiting SOC exist, including the Olami-Feder-Christensen earth-
quake model, the Oslo ricepile model, and a number of forest-fire models [22]. These models

played a key role in the development of the SOC framework.
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The second model, the cortical branching model (CBM), describes a stochastic branch-
ing process in a cortical neural network. In contrast to mechanistic models of neural network
dynamics, the CBM initially represented a “parsimonious approach” for describing meso-
scopic neural network dynamics, such as those observed using microelectrode arrays, i.e.,
individual elements in the model represented individual microelectrodes [23]. In the latest
manifestations of the CBM, the model is extended to describe microscopic dynamics and
interactions between individual neurons [19, 58]. The CBM is not capable of self-organizing
to a critical point; as I will demonstrate, it must be fine-tuned to a critical point and hence
it does not strictly fall under the SOC framework.

Realizations of both of these models in this chapter will feature a full separation of
driving and relaxation timescales, as this is a fundamental requirement for SOC; a gener-
alization of the CBM which does not feature a complete separation of timescales will be

explored in Chapter [4

3.1 The Bak-Tang-Wiesenfeld Model

The BTW model is a cellular automaton which exhibits SOC in d > 2 dimensions [20, 22 [51].
Conceptually, the model works by dropping “grains” of sand on a square latticeﬂ where
each lattice site ¢ is allowed to accumulate these “grains” up to a certain threshold height
2 at which point the site will topple its grains to its neighboring sites A (1), which may
induce further topplings. These topplings constitute avalanches, whose sizes are given by
the number of topplings involved in such a relaxation event. In the thermodynamic limit,
avalanche sizes obey power-law scaling and thus fluctuations occur over all length scales,

suggesting a diverging correlation length, which may indicate criticality [20]. The algorithm

for the conservative two-dimensional case (also known as the 2D Abelian sandpile model)

The BTW model produces similar results, with identical critical exponents in a triangular lattice [59].
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is presented below:
1. Initialization. Start board in random configuration z; < 2.
2. Drive. Drop a grain on a random site ¢: z; — 2z; + 1.

3. Relazation. For all sites i with z; > 2, topple one grain to each of its neighboring
sites: z; — z; —4 and zpr(;) — 2n7(;) + 1. Grains are conserved within the bulk, where
each site has four neighbors, but not at the edges, where sites can have as few as two

neighbors. Continue until z; < 2th for all sites i.
4. [Iteration. Return to 2.

There are two key details to emphasize here. First, there is a separation of timescales in
that driving occurs at a rate much slower than the relaxation and grains are only dropped
after the previous avalanche has finished. Second, there is a direct causal relation between

toppling events and subsequent toppling events are separated by a single timestep.

3.1.1 The Random-Neighbor Mean-Field Approximation

In developing a mean-field approximation, it is useful to employ the random-neighbor vari-
ant of the Abelian sandpile model. Instead of choosing the neighbors N (7) of site ¢ depending
on the location of that site, i.e., at the edges or in the bulk, we implement a translational
invariance by considering each site to have |N| = 4, randomly-chosen neighbors. This situ-
ation is compatible with the thermodynamic limit. We desire a master equation to describe
the dynamics and determine the steady state behavior. Such an equation would allow us
to determine the fractions of sites with z grains at a time ¢; in the thermodynamic limit,

these are approximated by the probabilities P,(¢). The master equation takes the form

Pt+1)=> (W(' = 2)Pu(t) - W(z = ) Pa(t)) (3.1)

Z/
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where W(z' — z) is the fraction of sites whose heights change from some 2’ to z, and
W(z — 2') is the fraction of sites whose heights change from z to z’. Restricting our
analysis to z < 2", W(z — 2') is proportional to the number of times a site is chosen as a
random neighbor, which means that, in the thermodynamic limit, W (z — 2’) = 0.

The probability that a single toppling will induce n additional topplings will depend on
the states of neighboring sites, specifically it will depend on the probability P(z!" —1) that

the site has n neighbors with a height of 2! — 1:

D = <|N’> (P(zth —1)"(1— P(Zth _ 1))\N|*”' (3.2)

n

Since all the heights are randomly established with z < z'" at the outset, we have that

P, =1/2"" for any z < 2", and so P(z!" — 1) = 1/

3.2 The Cortical Branching Model

The cortical branching model (CBM) is a nonequilibrium stochastic cellular automata model
of cortical dynamics which has proven useful in capturing many features of neural network
data [19, 23, 24], [60, 58]. In the CBM, model neurons, which are called nodes, lie at
the vertices of a directed graph representing a neural network. Each node can be in a
number of different states: quiescent, active, or refractory. To become active, a node must
first be quiescent; following activation, the node immediately becomes refractory for some
amount of time. The presence of refractory periods indicates the CBM features non-Markov
dynamics, i.e., the state of a node depends on not only the prior timestep, but a number
of timesteps before the present, depending on the duration of the refractory period; the
CBM has memory. Modeling non-Markov dynamics can be difficult, however, in this case,
we can circumvent these difficulties by adding into the model additional states to create a
Markovian model. Each node can hence be in a number of states, two of which represent

quiescence and the firing of an action potential (i.e., activation), with additional states
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to represent the duration of neuronal refractory periods. Neuronal states are thus modeled
as clock degrees of freedom, i.e., from quiescence follows activation, followed by a series
of refractory states during which the node cannot become active, and concluding with
an eventual return to quiescence. In the mean time, neuronal activity spreads through
probabilistic model synapses, represented by the edges of the directed graph. The CBM is
a “top-down” model in that it is not microscopically accurate, instead it provides a metaphor

of neural network dynamics which relies on fundamental aspects of neural network dynamics.

Inhibitory nodes might be modeled as contributing to dynamical, heterogeneous spon-
taneous activation probabilities and connections. Further enhancements might include dy-
namical refractory periods whose durations would depend on the recent state of the network;
refractory periods and levels of inhibition would increase during bursts of activity. This dy-
namical disorder then presents a fluctuating bottleneck which may amplify small signals,

but prevents runaway activity.

3.2.1 Formal Description

What follows is a formal description of the CBM [19]. Consider a random directed network
of N nodes, where connections and their relative strengths are established at the outset and
kept fixed throughout the dynamics, as in quenched disorder. Random networks can either
be strongly-connected—in which case there exists a path (never running anti-parallel through
directed connections) from any node in the network to any other node on the network
(through possibly many intermediaries)—or weakly-connected—in which case the network
contains disjoint subgraphs and is said to not be fully-connected. Networks are generated
randomly and tested for connectedness by examining the corresponding adjacency matrix
associated with its graph. In this study, only strongly-connected networks are considered,

i.e. those with irreducible adjacency matrices [61]. See Figure for a sample network.
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5 =

Figure 3.1: A randomly-generated network of N = 5 nodes (vertices). Each node has
kin = 2 incoming connections (edges), each of which are weighted; the thickness of the
edges illustrate the connection strengths P;;. Node 3 is active (23 = 1); nodes 1 and 4 are

quiescent (z; =0 for ¢ = 1,4); and nodes 2 and 5 are refractory.
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The network structure is described by the weighted adjacency matrix P, with elements
0 < P;; < 1 representing the probability that a connection from node i to node j will
transmit activity. In principle, the F;;’s can be any of any value so long as they are
probabilities, but in order to facilitate control of activity spreading, we require that, for any

site 1,
(%)
k

out

Z Pin,k) = K (3.3)
k=1

where k is the branching parameter, i.e., the spectral radius of the matrix P, k((fu)t is the

out-degree of node i, and n;(k) is the kth element of the set n; = {jx} containing indeces

out

of nodes postsynaptic to node 1, i.e., k9 = |n;|. For example, in Figure node 2 has

k:gi)t = 2 outgoing connections, one to node 3 and the other to node 4, and so n; = {3,4}.

In our implementation of the CBM, we consider random networks connecting nodes
with a fixed in-degree k;y, i.e., each model neuron has a fixed number of presynaptic model
neurons. This is done to facilitate not only generation of the networks, but also quantitative

analysis in the mean field. Network connections are generated randomly, so we expect the

()

average out-degrees k,,;, for each node ¢ will equal the fixed in-degree, i.e., (k:((:;BQZ = kin.

Fach connection is then weighted according to the following function:
6—Bnij
kin ,—Bn’

Zn:l €

where k;;, is the in-degree at each node (which we constrain to be fixed), B is the connection

P’Lj = ’ipnij =K (34)

bias, and n;; € {1,--- , kin} in an integer which ranks each connection inbound at node j by
strength, e.g., n;; = 1 corresponds to the strongest connection from node ¢ to node j. The

branching parameter x must be restricted to the range [0, Kmae] such that all P;;’s remain

kin —Bn
n=1¢

well-defined as probabilities. The upper bound is then given by kmee = €° >
and the lower bound corresponds to a fully-disconnected network. Close to kK = Kmaz, the

CBM produces constant activity. It had previously been determined that for a network of

N = 60 nodes, each with a fixed k;;, = 10, that the values B = 1.2 and B = 1.6 allowed
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for a reasonable fit to the local field potential (LFP) dynamics recorded from living neural

networks [24]; my primary simulation results have been obtained using B = 1.4 and k;;, = 3.

3.2.2 Cellular Automata Rules

The state of each node i is described by a dynamical state variable z; € S, where S =
{0,1,2,...,7.}, 7» > 1 is the integer-valued refractory period, i.e. the number of timesteps
following activation during which a node cannot be made to activate. For example, in Figure
7, = 5. The configuration space of the CBM is given by C = {Z = (21, 22,...,2nN)|2i €
S}i—1.n, where |C| = (7 + 1)¥; for example, C = {(0,0); (0,1); (1,0); (1,1)} for a system of
N =2 and 7, = 1. A node i is said to be active when z; = 1, inactive (i.e. quiescent) when
z; = 0, and refractory at any other value. Nodes can only be active for a single timestep at
a time and can be activated spontaneously with probability ps or driven to activate by the
active nodes in the previous timestep.

The number of timesteps between spontaneous activations, Ats, is determined by a
discrete probability distribution of our choice. A Poisson distribution with rate 1/(psN),

i.e.,
eil/psN

P(Ats) — 4(pSN)AtS Ats!,

(3.5)

allows for a greater separation of driving and relaxation timescales, such as that seen in
instances of SOC [51), [62], thus minimizing the occurrence of overlapping avalanches. By

using a geometric distribution with success probability psIV, i.e.,

P(Atg) = (1 — psN)A="1p N, (3.6)

avalanches are, however, more likely to overlap and contain a mixture of spontaneous and
driven events. Simulation results presented in Chapter [4] utilize Poisson-distributed spon-

taneous events to generate avalanches, in an approximation to SOC.
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Nodes can also be driven to activate by the nodes connected to it with probabilities of
the form given in Equation but only if the driving node was active and the driven node
quiescent in the preceding timestep. A node’s dynamical variable z; changes determinis-
tically following activation, increasing by 1 every timestep until z; = 7, is reached, after
which the node becomes quiescent (z; = 0) until it is stochastically activated once again.
Thus, each state variable z; represents a clock degree of freedom. For example, consider a
node ¢ with 7. = 3: following the timestep during which it was active, this node will become
refractory, its state deterministically changing from z; = 2 to 2z; = 3, and finally to z; = 0.

The CBM is summarized in the following algorithm:

1. Initialization. Prepare nearest neighbor connections by randomly assigning connec-
tions between nodes while keeping the in-degree k;,, fixed (parallel connections are
allowed; loops are not) and prepare connection strengths P;; as given by Equation
. Initialize the system in the only stable configuration, i.e., z; = 0 for all nodes
i. Prepare the first spontaneous activation(s) at ¢ = 1 and subsequent spontaneous

activation times by drawing inter-activation intervals At from a specified distribution.

2. Drive. For each spontaneous activation time equal to the current time step ¢, randomly
select a node j to activate, z;(t) — 1; if however node j was not initially quiescent

(i.e. zj(t) = 0), then spontaneous activation does not occur at node j.

3. Relazation. Any nodes i for which z;(t — 1) # 0: z(t) = z;(t — 1) + 1. If 2z (¢t) > 7,
then z;(t) — 0. Node j, having been active at time step ¢, will influence the activity of
a neighboring node & at time step ¢+ 1 with probability Pjj, but only if z,(t+1) = 0:

zk(t+1) = 2zt + 1) + 1.

4. Iteration. Start the next time step: Return to 2.

The CBM features its own neural network analog of the avalanches seen in the BTW model,
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called neuronal avalanches, which may occur spontaneously (when the spontaneous ac-
tivation probability, ps, is non-zero) or may be triggered by a single activation (in this way
simulating the case ps = 0). In this chapter, only the case of triggered avalanches will be
considered, while a CBM with spontaneous events is considered in Chapter Neuronal
avalanches exhibited by the CBM mimic spatiotemporal patterns observed in living neural
networks [23] [24], where they were defined as periods of neuronal activity spanning a num-
ber of adjacent time windows whose width were determined by the MEA amplifier sampling
rate—typically 250 Hz to 1 kHz, corresponding to 1 ms to 4 ms long windows. Neuronal

avalanches correspond to fluctuations in the density of active nodes, p;(t), defined as

1
L) = 5 D O (37)

at time t. We will return to this quantity, as it will be determined to be an order parameter
of the CBM. Features and properties of neuronal avalanches are described below. See

Appendix for a MATLAB code to run simulations of the CBM.

3.2.3 Avalanche Shape

Many properties of neuronal avalanches are encoded in the avalanche shape, which we
define as the density of active nodes over the duration of an avalanche, resembling definitions
given in previous studies [63]. The avalanche shape vector X, gives the shape of the gth

avalanche:
N

Xg(@) =D 0e0 61,15 (3.8)

i=1
where tg is the avalanche starting time, d; is its duration, and ¢ = [1,d,] € Z* indexes the
number of timesteps within the avalanche. From this, the size of the gth avalanche is written

as sq = Ziq:l X4(¢), which corresponds to the number of MEA electrodes participating in

the avalanche.
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Avalanche size and duration probability distributions have been conjectured [14] to
follow power laws, P(s) o« s™7 and P(d) o< d~“. In simulated and living neural networks,
values of these exponents have been found to be 7 ~ 1.5 and o ~ 2 for LFP data and
7~ 1.6 and « =~ 1.7 for neuronal spike data; results which have been used to support the

criticality hypothesis [23, [64] 65].

3.2.4 Avalanche Branching Ratio

Here I briefly discuss two different definitions of the branching ratio which I have encoun-
tered in the literature. In the context of living neural networks, the branching ratio o
has been defined as the average number of descendant activations within an avalanche [14].
This is the analog of the definition given in the context of the BTW sandpile model [51}, [66].
For a particular avalanche ¢, this corresponds to the total number of events in the timesteps
¢ € [2,d,] divided by the duration of the avalanche d, i.e.,

dg—1

o= di > X (p+1). (3.9)
)

For a particular node i, the average number of descendants is approximately equal to the
sum of the transmission probabilities F;; emanating from i and so oy is, on average, equal
to the Perron-Frobenius eigenvalue  if P;; = kp; and ) | ;=1 for all pairs of nodes (i, 7).
We can then approximate the branching ratio using information of the network structure:

(2 (1))
q koul;ft

S Siz > Py (3.10)

=1 j=1
where the first sum is taken over the elements of the set of activations within avalanche ¢,
A(q) = {x,}, where z,, = (i, ¢) is an ordered set indicating activation of node ¢ at timestep
¢ within the avalanche; x,(1) = i¢. The cardinality of the set A(q) is equivalent to the size

of the avalanche s,. As defined in [65] and used in [23], however, the branching ratio is
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defined as the ratio of the number of activations between adjacent timesteps, i.e.,

op= Yy ST (3.11)

If we consider only tree-like avalanches initiated by a single activation, i.e., those with
X (1) = 1, with the above restrictions on the P;;’s, then this expression becomes a sum in

powers of k,

1 oy K®
= — —_ 3.12
Oq dq qu::l /<;¢*1 ( )

which reduces to o0, = x in the thermodynamic limit and hence the two are asymptotically
equivalent. Strictly speaking, however, the definitions given in Equations [3.9] and are
not equivalent. In order to address this discrepancy, we must return to the motivation
behind the definition of such a quantity, i.e., to quantitatively describe the excitability
of a network by counting the average number of activations which follow from a single
event. When using neural network data, however, this is not straightforward, as detailed
information of the network and causal structure of the dynamics is necessary to accurately
define such a quantity, particularly in the presence of synaptic delays and absence of a
separation of timescales. This is addressed in Chapter |5, where I define the branching

fraction of an alternative to neuronal avalanches, termed causal webs.

3.3 A Mean-Field Approximation of the CBM

To gain a deeper understanding of our CBM and its nonequilibrium phase diagram, we next
develop an analytical mean-field approximation. In the mean-field approximation, a typical,
representative node and its local neighborhood of interaction (i.e. the k;, sites which directly
influence its behavior) are used to approximate the behavior of the network as a whole—
the key presumption here being that transition probabilities are translationally invariant in

the thermodynamic limit and beyond the upper critical dimension. We would expect the
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mean-field approach to represent a faithful approximation of the simulation results when
the simulated graph is irreducible, i.e., the probability for an excitation originating at one
node to influence any other node in the network is nonzero. The simulated graphs then
contain no subgraphs which are inaccessible; the graph can be said to be fully connected [61].
It is an extremely interesting question to explore the cases where the graph is reducible,
but this is beyond the scope of this work.

The cellular automaton rules of the CBM (described above in Section are approxi-
mated by a Markovian stochastic process and so the probability that a particular node will

be in a specific state is given by the Chapman-Kolmogorov equation [67]:

kin
Plo(k+1)=2)= >  W(z—z2)]]Pk) (3.13)
zESkint1 =0

where z is an element in the state space S = {0, ..., 7.}, r € {0, ..., ki } identifies the nodes
(with 7 = 0 corresponding to the representative node), z = (2o, ..., 2x,, ) is the configuration
of the system (i.e. a vector whose elements are the states of the representative node and its
local neighborhood of interaction), and W(z — z) is the probability that the » = 0 node
will transition into state z given the system configuration z. At a particular iteration of the
mean-field map, k, the probability that a node r is in state z is equivalent to the fraction

of nodes z,(k) in state z, i.e.,

P(erlh) = 2) = 2a(k) = 7 D 8x 0.0 (3.14)

Additionally, because we are primarily interested in the density of active nodes z; and
because a node must be quiescent at k to become active at k + 1, we rewrite Equation [3.13

as

kin
zi(k+1) =ao(k) > W(z —1) ][] k), (3.15)
j=1

z’eskin

where z’ is the configuration of the local neighborhood excluding the representative node, i.e.

z' = (z1,..., 2k, ). We write a general expression for the transition probabilities W (z" — 1)
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as one minus the probability that a node will remain quiescent, or

kin
W(z —1)=1- ][ - rp;s:,1), (3.16)
j=1
where the connection strengths p; are of the form given by Equation Because z varies
deterministically following activation, z,(k + 1) = z,_1(k) for z € {2, ..., 7, }.

Along with Equation these equations form a nonlinear, autonomous (7, + 1)-
dimensional map of first order (i.e. Markovian). By including the restriction that, at any
iteration t, " x.(k) = 1, we reduce the dimension to 7,. This map then allows us to
calculate the mean-field densities of quiescent (z = 0), active (z = 1), and refractory nodes
(z > 1). As I have mentioned previously, an equivalent mean-field approximation can be
formulated as a non-Markovian 7.th-order map in one dimension. Finally, we note that
increasing the refractory period by a single timestep increases the number of equations by
one; whereas increasing k;, increases the order of polynomial to be solved. Fixed points
x] of this map give approximate densities of active sites, i.e. mean-field approximations
to Equation [3.7] Stability of each fixed point is determined as usual by calculating the

eigenvalues of the 7. X 7. Jacobian matrix J associated with the map, which will have the

form
A B B B B
1 0 O 0 O
J=10 1 0 o 0], (3.17)
0O 0 O 1 0

where A = 0x1(k + 1)/0x1(k) and B = O0x1(k + 1)/0x,(k) for z € {2,...,7.}. If each of
the eigenvalues of J when evaluated at a certain fixed point =] have modulus less than one,

then that fixed point is stable.

We first consider the simplest case, i.e., that with k;,, = 1. The mean-field approximation
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in this case is given by the quadratic map

z1(k+1) = (1 - il’z(k’)) cxi(k)
z=1

zy(k+1)=xz,_1(k), for z={2,--- , 7}, (3.18)

where ¢ = kp1(1 — ps), i.e., ¢ = kp1 when p; = 0. This yields two fixed points: z] = 0
and =7 = (1 — 1/kp1)/7r. The vanishing fixed point becomes unstable when x > 1 and
so the stable fixed point acts as a Landau order parameter, i.e. p; = 0 for k < k. and
p1 > 0 for k > K., with the critical point at k. = 1. We find the critical exponent 5 = 1:

2% oc (k — ke)? for k > Ke. As in Equation we write the susceptibility

; (3.19)

finding that it diverges at . with exponent v/ =1 for k < ket x X (ke — /{)*”/. For x > k¢,
it diverges with exponent v = 1: x & (k — k¢) 7.
It is remarkable to note that the k;, = 1 CBM mean-field approximation is the discrete-

time equivalent of the directed percolation mean-field equation when 7. = 1:

Aipr(t) = —epr(t)? + (e — L = po)p1(t) + ps (3.20)

as given in [54] and presented in Section where ps plays the role of the external field.
These two seemingly different processes are therefore related even when ps # 0. We note
that the CBM has a continuous phase transition when ps = 0, characterized by the order
parameter g1, but that transition disappears when ps # 0, as will be demonstrated in
Chapter 4. The case ps = 0 is consistent with the Janssen-Grassberger conjecture [55] 56],
which states that a model with a continuous phase transition should belong to the DP
universality class if the transition is characterized by a non-negative one-component order

parameter, among other conditions (cf. Section [2.2).
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In the case k;;, = 2, the mean-field approximation produces the following cubic map:
zi(k+1) = (1 - Z xz(k:)> (7&2]?1])2:6%(1{2) + kz1(k))
z=1
2 (k+1)=x,_1(k), for z={2,--- 7.} (3.21)

where we again have a vanishing fixed point, ] = 0, but now also a pair of real, non-zero

fixed points given by

et V (kp1pe + 77)2 — dp1pari(k — 1) (3.22)
1+ 2’{'p1p27—7“ ’ .

Stability of the fixed points again changes at k. = 1. The fixed point ] = 0 is stable
when x < k. for any value of 7,; this defines the disordered phase. Stability shifts to the
fixed point 2]_ when k > k.—defining the ordered phase—but only for small values of 7,.
Expanding x%_ around s = k., we again find #%_ oc (k — k.)? with 8 = 1. The zero-field

dynamical susceptibility is then found to be
N — (3.23)

where f =1+ (p1p2 — 1)z* — p1pex*® and g(ps, k) = (1 — &) + (1 + K)ps — 2(k + p1p2) (ps —
1)z* + 3p1pa(ps — 1)z*2, where z* is 0 below the critical point (k < k) and z}_ above it
(k > Ke). Critical exponents of x(x) below and above the critical point are hence found to
be 4/ =1 and v = 1, respectively. Note that y (k) diverges at x. = 1 only when ps; = 0.
With B = 0.5, kK = 1.6, and 7. > 9, the fixed point 2]_ loses stability via a pair of com-
plex conjugate eigenvalues crossing the unit circle, as in a Neimark-Sacker bifurcation (see
Appendix [B] Indeed this defines a new phase boundary which separates the ordered phase
from an entirely different phase, where no stable fixed points exist, and the CBM exhibits
quasiperiodic behavior (see Figure. In fact, for large 7., all fixed points of the k;,, = 2
mean-field lose stability and the mean-field density of active nodes x (k) subsequently ex-

hibits oscillatory behavior as presented in Figure (3.3} similar quasiperiodic oscillations have
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Figure 3.2: Nonequilibrium mean-field phase diagram for k;,, = 2, at ps = 0. The white
region corresponds to the subcritical disordered phase with a vanishing stable fixed point;
the light-gray region corresponds to the supercritical ordered phase with a nonzero stable
fixed point; the dark-gray region corresponds to an “oscillatory” quasiperiodic phase, where
all fixed points are unstable. Solid black lines are lines of non-analyticity and thus represent

phase boundaries.
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Figure 3.3: CBM mean-field density of active nodes over 400 iterations to show detail of
the quasiperiodic behavior; k;,, = 2, B = 0.5, kK = 1.60, 7 = 9, ps = 0. The oscillations

continue indefinitely.

previously been observed in SIRS-like models [68]. Within this quasiperiodic phase, z;(k)
does not converge to a fixed-point and periodic points are not present; the oscillations are
hence “quasiperiodic”. The envelope of z1(k) is, however, sinusoidal here (see Figure .
Oscillatory behavior emerging at large refractory periods had previously been observed in
neural network models [27, [69] [70], but the quasiperiodic behavior observed here and in
[68] was not found. It should be noted that Curtu and Ermentrout’s model involved both
excitatory and inhibitory elements whereas the CBM only involves excitatory elements [70].

At similar parameter values, simulations of the CBM exhibit oscillatory behavior when
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ps 7 0. In the following chapter, I describe this generalization of the CBM which does not
feature a critical transition. A more detailed analysis of the quasiperiodic phase can be

found in Appendix [B]
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CHAPTER 4

The Quasicriticality Hypothesis

In this chapter, I will consider situations where there is no longer a separation of timescales.
Specifically, I will explore the behavior of the BTW model (in Appendix and CBM when
driving can occur during relaxation, i.e., in the case of a strongly-driven system. SOC should
not be expected in such situations since, as shown in Section the presence of an exter-
nal influence induces an explicit symmetry breaking, and the subsequent disappearance of
criticality. In the following sections, the external influences will be modeled as events which
occur randomly according to some spontaneous activation probability, ps. These events can
be distributed to precisely control the degree to which the driving and relaxation timescales
are mixed. When the external driving is present, we indeed find that the phase transition
disappears and hence argue that criticality is not attainable by living neural networks, or
any living system in general. We developed a more rigorous quantitative formulation and
extension of the criticality hypothesis of Chapter [3|to open systems featuring a mixture of

driving and relaxation timescales, known as the quasicriticality hypothesis:

Living systems tend to self-organize along a nonequilibrium Widom line, where prox-
imity to critical optimality is dictated by the strength of the influence of their environ-

ments.

Our quasicriticality hypothesis involves a nonequilibrium Widom line of maximum (though
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finite) dynamical susceptibility along which the correlation length and, as demonstrated in
Section mutual information are expected to be maximal. Quasicritical dynamics are
observed along this line: for instance, distributions of neuronal avalanches are nearly power-
law and avalanche shape collapses can be approximately performed to yield approximate
scaling exponents [71], [72]. This suggests that, while “critical optimality” is not accessible
due to essential coupling to an environment, a relative optimality may be achieved along
the nonequilibrium Widom line. Moreover, this nonequilibrium Widom line framework
quantifies the notion of proximity to the unattainable nonequilibrium critical point and
can perhaps be used to drive the system towards or away from its optimal behavior, by

manipulating the relevant parameters.

4.1 The Strongly-Driven CBM

We now examine the CBM driven by the spontaneous activation of its nodes, which occurs
with probability ps for each node. Simulations presented in this chapter utilize Poisson-
distributed spontaneous events to generate avalanches, to allow for close comparison to SOC
(see Section . Because each node can now become spontaneously active with probability
ps, and can spread this activity to other nodes depending on their activity transmission
probabilities P;;’s, periods of inactivity (p1 = 0) are punctuated by spontaneous periods
of activity (p1 # 0) which constitute avalanches. Whereas in the p; = 0 case, the order
parameter was the long-time density of active nodes, when ps # 0, we cannot expect this to
be the case. We will, however, still be interested in calculating the density of active nodes

and will consider its time average:



where Np is the total number of simulated time steps. The behavior of the dynamical

susceptibility x will also be considered:

X = N[(pi(®)e = (1)), (4.2)

where the factor of IV is included to ensure appropriate scaling in the N — oo limit. T will
now describe the mean-field approximation of the CBM with ps # 0 to demonstrate that
the critical transition occurs (in the thermodynamic limit) only when the external driving

is absent.

4.1.1 Quasicriticality in the Mean-Field CBM

With a nonzero spontaneous activation probability, Equation becomes

kin
Wz —1)= (1 —ps H (1 —Kpjdz; 1) (4.3)

The k;;, = 1 CBM map given in Equation becomes
zi(k+1) = (1—2:32 ) (1 —ps)z1(k) + ps)
x(k+1)=x,_1(k), for z={2,--- , 7. }. (4.4)

This map produces no vanishing fixed points, but instead, a pair of real, non-zero fixed

points given by

L= k(L —ps) — (L+ps7y) \/(H(l —ps) — (14 ps7r))? — 4kps(1 — ps)7r
1 26(1 — ps)7r

In the case k;;, = 2, the mean-field approximation produces the following cubic map:
x1(k+1) (1 - sz ) —azi(k) + b1 (k) + ps)
2y(k+1)=x,_1(k), for z={2,--- , 7.}, (4.5)

where a = k2p1p2(1 — ps) and b = k(1 — ps). Again, no vanishing solutions.
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4.1.2 The Nonequilibrium Widom Line

When ps; # 0 (and for small values of 7.), x]_ is stable across x = 1 and the dynamical

susceptibility x no longer diverges, i.e. the phase transition disappears, giving way to a
crossover region (see Figure . To give an idea of the shape of x, we have included light-
blue bubbles with diameter logarithmically-scaled to its magnitude, and blue horizontal
lines indicating its width at half-maximum which encompasses the quasicritical region. We
have used the value B = 0.5 for presentation purposes, as it allows for a better view of
the extent of the quasiperiodic phase boundary when « is large; note that with k;, = 2,
Emaz(B = 1.4) &~ 1.247 while Kpq:(B = 0.5) &~ 1.607. Changes in B had no discernible
impact on the phase diagram. For a fixed value of 7., we can identify the peak in the
susceptibility (and correlation length), defining a nonequilibrium Widom line in the 7,—&
plane; for the equivalent equilibrium Widom line see [73]. The nonequilibrium Widom line

in the ps—k plane is presented in Figure 4.2

4.1.3 Simulation of Avalanche Physics

We now go beyond the mean-field and present results from CBM simulations which demon-
strate the presence of a nonequilibrium Widom line, a nonequilibrium phase diagram quali-
tatively similar to the mean-field nonequilibrium phase diagram, and a quasiperiodic phase.
Because the mean-field approximation eliminates the fluctuations responsible for avalanches,
it is not useful in analyzing the statistics of the avalanches associated with our model and so
we also utilize results from our CBM simulations to study the avalanche physics and prepare
avalanche size distributions. We re-emphasize the use of irreducible graphs in simulating
the CBM.

We performed simulations using system sizes of 32, 64, 96, and 128 nodes, with spon-

taneous activation probabilities of 107°, 1074, and 1072 at each value of x = [0.8,1.3] with
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Figure 4.1: Nonequilibrium mean-field phase diagram for k;, = 2, at selected values of p;.
The light-gray region corresponds to the supercritical ordered phase with a nonzero stable
fixed point and the dark-gray region corresponds to an oscillatory quasiperiodic phase,
where all fixed points are unstable. Solid black lines are lines of non-analyticity and thus

represent phase boundaries.
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Figure 4.2: Nonequilibrium Widom line for the k;, = 2, 7. = 1 mean-field CBM evaluated

over maximum number of 2000 iterations. The connection bias was B = 1.4.
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x/x )

Figure 4.3: Dynamical susceptibility x and p; (inset) results from simulation with N =
128 (data markers) and mean-field approximation (lines). Results are normalized to their
maximal values and plotted against x normalized to the quasicritical point k,, at p; = 107°.
For simulations, we find s, to be 1.10, 1.12, and 1.17 at p, = 1073, 1074, and 107?,
respectively. Curves of the dynamical susceptibility y have been normalized to (M) the
maximum dynamical susceptibility of the p; = 107° simulations. Similarly, values of the

branching parameter, s are normalized to the Widom line of the p, = 107° simulation, .
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Figure 4.4: Logarithmically-binned avalanche size probability distributions P(s) at various

values of k. The dashed line represents a power law with exponent 7 = 1.6.

a step size 0k = 0.01 and with 7, = 1. Simulations were performed on ten different ran-
dom networks until 10% avalanches were generated at each value of x; avalanche durations
were limited to 10° time steps. Note that with B = 1.4 and ki, = 3, Kmaez ~ 1.307. We
determined the time-averaged density of active nodes p; as well as the dynamical suscepti-
bility x, each as functions of x for the various values of ps for simulations and mean-field
for comparison. The dynamical susceptibility peaks at quasicritical points k,, defining a
nonequilibrium Widom line in the p;—x plane (see Figure . Avalanche size distribu-

tions at these k,, exhibit quasi-power-law behavior over a maximum number of decades (see
Figure [4.4)).
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Much of the disagreement between the mean-field and simulation results is due to finite-
size effects. If we were interested in the thermodynamic limit, however, we would need much
larger system sizes which would require correspondingly large k;,, = nN for 0 < n < 1 such
that the simulated networks maintained irreducibility; this quickly becomes numerically-

intensive and computationally-complex.

Quasiperiodicity Revisited

At values of 7. and x comparable to those at which the mean-field exhibits quasiperiodicity,
an oscillatory synchronization phenomenon is observed in simulations (see Figure . At
high « and low 7, activity is nearly constant and very few avalanches are produced. As
T, is increased, large populations of nodes activate and become refractory long enough
for avalanches to be produced once again. Note that avalanches produced under these
conditions are not scale-free, since the typical avalanche size approaches the system size.
The quasiperiodic phase was found to diminish with increasing ps, eventually disappearing

at ps ~ 7 x 1073,

4.1.4 Optimal Information Transmission and the Widom Line

Mutual information has previously been used to measure information transmission in neural
networks [74] and to demonstrate that information transmission is optimized at, or in the
vicinity of phase transitions [14, 37, [75] [76]. To investigate this in the random networks of
the CBM, we hence compute the mutual information I7(S;R) from an ensemble of stimulus
patterns represented by the configuration of a subset of Ng < N nodes, Cs = {Zs =
(Ziys Zigs - - - :ziNS)|Zik € S} with dimCs = (7 + 1)™s, and an ensemble of corresponding
response patterns represented by the configuration of a subset of Ng < N nodes, Cr =
{Zr = (215 22> -5 Zin )7 € S} with dimCr = (77 + 1)™®, where i), and j,, belong to

random, disjoint subsets (of dimensions Ng and Ng, respectively) of the set of all N nodes.
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From [77], we have I7(S;R) = H(R) — H(R|S), where
H(R) = =) P(Zr)log, P(Zr) (4.6)
Cr

is the entropy (i.e., variability) of the responses with P(Zr) = Nz, /(7 + 1)™R Nyyials, and

H(R|S) = — > P(Zr|Zs)log, P(Zr|Zs) (4.7)

Cr,Cs

is the entropy of the responses conditional on the stimuli with P(Zgr|Zs) = Nzq\zs /Nirials. In
the equations above, Nz, corresponds to the number of times the configuration Zr appears
in the response and Ny, 7, corresponds to the number of times the configuration Zgr appears
in response only to the stimulus Zs. The subscript 7" in the mutual information is an integer
representing the number of time steps between the stimulus and the response.

We set Ng = Ngr = n and start a CBM simulation with an initial network configuration
corresponding to an element of the stimulus configuration ensemble Cs; the resulting mutual
information is computed using the configuration of the response nodes after some delay,
i.e. some number of time steps T later. The average mutual information at a particular
value of the branching ratio I(k) is determined after each element of the stimulus node
configuration ensemble Cs has been repeatedly applied Nyias times and averaged over the
set of T' = {Tmin, Tmin + 07T, ..., Tmax} delay times, i.e.

Tmax

I7(S;R), (4.8)
T=Tmin

1
Ndelays

I(k)

where 07 = Tiin + (Tmax — Tmin)/(Ndelays — 1). Clearly, the task of computing I(x) quickly
becomes numerically-intensive as n is increased. Using a system size of N = 64 and Nyyjas =
100, we compute the mutual information for different sizes of input/output node sets n =
{4,6,8} averaged over the delays T' = {60, ...,120} in steps of dT = 10 (so Tmin = 60,
Tmax = 120, and Nyelays = 7) to demonstrate that the peak in I(x) converges towards the

Widom line, i.e. the peak in the dynamical susceptibility at r,, &~ 1.22, as n is increased (see
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Figure . Peak locations for I(k) were determined by fitting to third-order polynomials
and identifying x values which corresponded to the maxima. As n approaches N/2 in the
thermodynamic limit, we expect the I(k) and x(k) peaks to precisely overlap. We note
that whereas mutual information has previously been shown to peak at the location of a
phase transition in a variety of systems [75] [76], we argue based on our numerical evidence
that generally the mutual information peaks along the nonequilibrium Widom line, thus

supporting the quasicriticality hypothesis.
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Figure 4.6: Dynamical susceptibility x(x) (triangles) and average mutual information I(x)

(in bits). The mutual information is computed for values n = {4,6, 8}, shown as crosses,

squares, and circles, respectively (main figure). The discrepancy between the Widom line

and average mutual information peaks, |Ak|, is determined for each value of n (crosses)

along with the line of best-fit (solid line: |Ax| = an™

line) as n is increased (inset).
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CHAPTER 5

Causal Webs: Unveiling Dynamical Correlations

To test the quasicriticality hypothesis introduced in Chapter @ we must have available
experimental preparations in which the spontaneous activation probability and network
strength of a living neural network can be precisely manipulated and observed. Such ex-
periments are already being performed, for example, the ex vivo preparation used in [78§].
Dynamical probes, such as the one presented in Appendix [D] can be employed to examine
the state of a living neural network and its closeness to criticality or the nonequilibrium
Widom line in such an arrangement. Spontaneous activation rates, however, are not a part
of the dominant paradigm for describing neural network dynamics. At present, “sponta-
neous activity” is taken to mean that activity of living tissue which has not been elicited
by an explicitly applied stimulus, e.g., mechanical, electrical, or chemical stimulation. As
used throughout this thesis, however, “spontaneous” suggests the absence of an observed
cause. Hence, a method must be developed to infer the causal structure of neural network
dynamics and separate spontaneous from driven eventsﬂ

In this chapter, I introduce the notion of causal webs (or c-webs for short), a new emer-

gent degree of freedom representing cascades of causally-related events, whose properties

T would be remiss if I failed to mention that the subject of causality is fraught with nuance and care must be
taken to avoid making faulty conclusions—consider the old adage: “correlation does not imply causation”.
I hence suggest the reader to further explore the topic [79] and take the results presented here with the

proverbial grain of salt.
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contrast and complement those of neuronal avalanches, which have been the standard for
some timeﬂ Whereas the latter are defined as spatiotemporal patterns of activation span-
ning a number of adjacent time steps framed by time steps lacking activity, c-webs explicitly
depend on the network structure and temporal delays, thus accommodating the complex
non-Markovian dynamics of living neural networks. Knowledge of the network structure
and delay information is key, as it allows to distinguish between different spatiotemporal
patterns of activation in a way which is not possible with avalanches (see Figure .
Presented here is the so-called deterministic causal webs algorithm, which does not
depend on connection strengths to establish a causal link between activations, i.e., a causal
pair (MATLAB code is presented in Appendix . An improved method, which has
not been explored here, is the stochastic causal webs method, in which causal pairs are
established stochastically, depending on the activity transmission probability between the

two neurons.

5.1 Mathematical Formalism

The concept of c-webs is now formalized in the context of neural networks. Individual
events are labeled x = (i,t), representing the activation of neuron ¢ at time ¢, or following
the notation used in [19] and Section zi(t) = 1 (2zi(t) = 0 meant quiescence). We
write the set of all events A = {z,}, e.g., in Figure , A ={a,b,c,d,e, f,g}. Formally,
we define a c-web C' as a set of correlated ordered pairs (xl(,l),x,(,2)) of events (i.e., spikes),
which we call causal pairs; quiescent neurons are not included in the set. The first and
second entries, a;(yl) and :cl(,z), of the vth causal pair represent causally-related presynaptic

and postsynaptic events, respectively. (Despite causal relations being made in a pairwise

fashion, we emphasize that this does not preclude multivariate interactions, as multiple

2A similar concept, known as causal polytrees, had previously been developed in a generic context along

with an algorithm to recover causal structure from data [80].
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Figure 5.1: Causal webs are distinct from neuronal avalanches in that they rely on network
structure and synaptic delays. A. A network produces a variety of spatiotemporal activity
patterns. B. Whereas only two neuronal avalanches are detected, a richer structure is
revealed when spontaneous events (blue annuli) are separated from c-webs (orange disks);

acceptance windows Wj;(t) are shaded light-orange.
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pairings can be made to a single event.) In the following, we show how to determine those
causal pairs.
A complete set of causal pairs X is constructed by taking the Cartesian product of each
event x, with its corresponding dynamic postsynaptic events U/(z,), i.e.,
X = zuxUlxy), (5.1)
2, €A

where U(z) = U(i,t) is the set given by
Ui, t) ={(4,t) | 7 € N(i) and t’' € W;;(¢)}. (5.2)

N (i) refers to the set of all postsynaptic neurons j of neuron ¢, and W;;(t) = [t + d;j —
Ajj,t+ dij + Agj] is a predetermined dynamical acceptance window: if a postsynaptic
neuron j is active within the acceptance window, then a causal link is inferred. The lower
bound of the acceptance window is adjusted such that it is greater than t. We write the set
of events in X as A(X) C A.

Synaptic delays d;; associated with the connection from a presynaptic neuron i to a
postsynaptic neuron j, are allowed to have some uncertainty A;; due to variability in the
postsynaptic spike timing. Later, in Section I present a method by which this infor-
mation can be determined from data; for the moment, we assume it is given. In Figure
[b.IB, synaptic delays and their uncertainties are given for the connections in Figure [5.T/A:
dio =2, d1g =4, d31 =2, and dgo = 1, with A9 =1, A4 =0, Az = 1, and Ay = 1. This
information can be used to determine causal pairs, e.g., the event a = (1,2) in Figure
has U(a) = {¢,d}, resulting in the causal pairs a x U(a) = {(a,c), (a,d)}. The complete set
of causal pairs for the spacetime graph in Figure is X = {(a,c),(a,d), (e, f)} and
so A(X) ={a,c,d,e, f}.

A causal web represents the connected components of a directed graph whose vertices

and edges are A(X) and X, respectively. The example in Figure thus has two c-webs,
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Cy = {(a,¢),(a,d)} and Cy = {(e, f)}. Note that spontaneous events initiate c-webs and
may become part of ongoing c-webs. The size s(C) of a c-web is defined as the total number
of distinct events within it. Defining that set as A(C'), the size s(C) is then given by its
cardinality: s(C) = |A(C)|. Note that A(C) C A(X). For example, A(Cy) = {a,c,d} and
A(Cy) = {e, f} in Figure 5.1B, with s(C1) = 3 and s(C5) = 2, respectively.

The duration D(C) of a c-web C can be defined in terms of its chord. The chord of
a c-web K(C) is the sequence of distinct time steps for which there are events belonging
to that c-web, arranged in ascending order in time, with no repeated elements. That is,
K(C) = (t1,ta, ..., ty), where t; and t,, are the times of the first and last events, respectively.
In contrast to the definition of duration for avalanches, the length of a c-web’s chord is not
equal to the c-web duration. Instead, we define the duration of a c-web as a measure of
its chord plus one, i.e., D(C) = 1+ AN(K(C)), where A(K(C)) = t, —t;. The chords of
the c-webs in Figure [5.1B, for example, are K(C1) = (2,4,6) and K(C2) = (7,8), with
durations D(C1) =5 and D(Cs) = 2.

Finally, we define the branching fraction ¢(C) of a c-web C' as the average number
of postsynaptic events associated with each presynaptic event, i.e., it is the average number

of descendants, as given in Section

L H©I [
4(C) = s(0) /; ;%ucm&”(cw (5:3)

where ¢ is the Kronecker delta. The first sum is evaluated over all events x,(C) of c-web C,

while the second one is over all presynaptic events :c,(})(C'), given by 5(C) = {xl(,l)(C’)}. For

example, in Figure[5.1B, 3(C1) = {a} and 5(C3) = {e}, with ¢(C1) = 2/3 and ¢(Cs) = 1/2.

5.2 Tests of the Method

We performed tests of our method using simulations of the cortical branching model (CBM)

[19]. Neuronal avalanches and c-webs should coincide as emergent cascades of correlated
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events in the limits ps — 0 and d;; = 1 for all pairs of nodes (i,7). We simulated 10°
avalanches on a network of N = 243 nodes, whose structure and synaptic weights were in-
spired by experimental data; all synaptic delays were set to a single time step. To simulate
the ps — 0 limit (a separation of timescales), we initiated avalanches at single, random
nodes, only starting a new avalanche when the previous one had finished; no spontaneous
events or concurrent avalanches were allowed. The resulting avalanche and c-web size prob-

ability distributions were identical, as expected.

In another test, we constructed a random, reducible network of N = 360 nodes, each
with an in-degree of k;, = 3, with a Perron-Frobenius eigenvalue of x = 0.23, as in [19]
and Section Synaptic delays (in time steps) were drawn from a uniform distribution
of integers in a closed interval, d;; € [1,16]. Spontaneous activation probabilities for each
node were drawn from a Gaussian distribution with mean and standard deviation of 10™%;
negative values were set to zero. The simulation was performed over 3.6 x 10% time steps.
Spontaneous events detected by our method were used to construct a new spontaneous
activation probability distribution, which we compared with the initial distribution using
a Kolmogorov-Smirnov test: the distributions were in agreement at a 5% significance level
with a p-value of 0.9955 [81]. We note that as the overall connectivity of the network (which
we quantify by s, as in [19]) is increased, spontaneous events become less prominent as c-
webs begin to dominate the dynamics, leading to more driven activations and refractory
nodes, thus preventing spontaneous events: neural network dynamics present a fluctuating

bottleneck to the influence of an environment.

5.3 Determining the Network Structure: Transfer Entropy

We have hitherto assumed knowledge of the network structure and delay information, i.e.,

the d;; and A;;’s, however in practice, this information must be learned from experimental
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data. T describe in this section a method, based on delayed transfer entropy (dTE) [82,
[83], by which this information can be established from high temporal resolution multiunit
timeseries data. The use of dTE is not absolutely necessary; alternatives, such as computing
conditional probabilities directly from data, may be applied so long as they provide a
network structure and synaptic delays.

Transfer entropy (TE) is a non-parametric, asymmetric, information theoretic statistic
of the information transfer between two random processes; in this context, the two processes
correspond to the timeseries, z;(t) and z;(t), corresponding to the activity of two neurons
i and j. Conceptually, TE is the information (measured in bits) gained by considering the

past activity of z;(t), thus improving the prediction of z;(t) (see Figure .

z;(t)
zj(t)

Figure 5.2: Transfer entropy is a measure of the information gained in predicting the future
activity of one random process by considering the past activity of another. In delayed
transfer entropy, a window (shaded boxes) encompassing z;(t — d), z;(t — 1), and z;(t), is

moved through the evolution of two random processes to determine the value of T;_,;(d).

In 2011, Ito et al. presented a generalization of TE, dTE, which accounted for activity
transmission delays [82]. The transfer entropy T;—;(d) is calculated for a particular pair
of neurons (7, ) at a specific activity transmission delay d. If there is a connection from
presynaptic neuron ¢ to postsynaptic neuron j, then the dTE is expected to peak at a delay

value d = d;; which corresponds to the activity transmission delay from neuron ¢ to neuron
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j—for example, in Figure[5.2} the dTE might peak at d;; = 4. The width, Ayj, of the curve

Ti—;(d) is used as a measure of the uncertainty in d;; [82]. The dTE is defined as follows:

Tisj(d) = Y plzi(t —1),2(t), 2zi(t — d)) log,
zi—;(d)

P50zt — 1), = (t — )
( p(5 (50— 1)) ) (5:4)

where z;,;(d) = {z;(t — 1), 2;(t), zi(t — d)} indicates that the sum is performed over all
possible configurations of the variables z;(t—1), 2;(¢), and z;(t—d). Considering only binary
variables, i.e., the case 7, = 1, this amounts to a sum over eight configurations z;_,;(d),
each occurring with frequencies quantified by the probabilities p(z;(t — 1), z;(¢), zi(t — d)).
To measure these probabilities, we can pass a window through the time-evolutions of two
processes, recording the frequency with which each configuration appears (see Figure .
The t = 5 window is shown as blue shaded boxes and the ¢ = 8 window corresponds to the
orange boxes, both at d = 4. In practice, however, we would prefer a more efficient algorithm
in which all joint probabilities are computed except for p(0,0,0), which can be determined
by subtracting 1 from the sum of the others. This would likely involve two subroutines,
one which finds all configurations {z;(t — 1), z;(t), 1} followed by another for configurations
{z;(t — 1), 2j(t), 0}, which uses information from the first subroutine to minimize the work
of the second. Conditional probabilities in Equation [5.4] are also estimated from timeseries

data [82].

Elimination of Spurious Connections

As in [84], we eliminated spurious connections using delay information produced by dTE.
We account for two specific kinds of spurious connections, common drive and transitive,
which confound our TE analysis (see Figure [5.3). The common drive effect occurs when
two neurons, B and C, share a common presynaptic neuron A: if neuron A fires, both B
and C are expected to fire at later times depending on their respective synaptic delays. In

this situation, dTE may detect a spurious connection between neuron B and C as shown
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in Figure 5.3]A. The transitive effect occurs when a neuron A connects to neuron C, which
then connects to neuron B; dTE may detect a spurious connection from A to B with a
delay equal to the sum of the synaptic delays from A to C and C to B (see Figure )
These connections can be removed by locating such neuronal trios and eliminating spurious

connections based on delay information.

Mean-Field Approximation: Converting 7; ,; to F;;

Because the CBM is based on stochastic activity propagation, we must convert TE values
to activity transmission probabilities to maintain compatibility with our stochastic view of
neural network dynamics. A mean-field approximation is utilized to make this conversion
and is described in the supplemental materials of [71]. Recalling the mean-field treatment
of Section consider the probability pgj )(t) for the postsynaptic neuron j to be active

(i.e., in state z = 1) at timestep ¢:

0 =95 (0= D@ + Pypl (¢ = d)) + 07 (¢ = DG + Pyp? (¢~ )

= p@) 4+ Pl (t — a), (5.5)

where péj )(t — 1) is the probability that neuron j is quiescent at timestep t — 1, pgj ) is the
spontaneous activation probability of neuron j, P;; is the activity transmission probability
from neuron ¢ to j, and pgi) (t —d) is the probability that neuron i is active at timestep t — d.
Note that despite the cellular automata rules we have defined for our models, the data
may show two adjacent activations of a single neuron from time to time, and so we have
accounted for this possibility here. For an examination of a similar delayed CBM mean-
field approximation, refer to Appendix[E.I} The probability of observing each configuration
{zj(t—1), z;(t), zi(t —d)} can then be determined by evaluating p(z;(t—1), z;(t), zi(t —d)) =
pg)(t_l)(t - 1)pg)(t) (t)pi?(t_d) (t —d), e.g., for the configuration {0, 1,0}, we have p(0,1,0) =

(1— pgj ) ) pgj ) (t)(1— pgi) (t—d)). As a consequence of the approximation given in Equation
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dCB - At

Figure 5.3: Spurious connections, of common drive (A) and transitive (B) types, confound

TE analysis, but can be removed using synaptic delay information.

76



the function T;_,;(d) (cf. Equation [5.4)), is proportional to P;j;, and hence we can estimate

P;; using the delayed TE calculated from experimental data.

5.4 Application to Experimental Data

We next demonstrate the utility of our method when applied to experimental data (see
Figure [5.4). For our demonstration, we have used ten data sets from [85], which were
collected in wvitro from organotypic cultures of mouse somatosensory cortex using a 512-
microelectrode array with a 60 um electrode spacing and a 20 kHz sampling rate over
an hour-long recording [86), [87]. Data were spike-sorted to identify individual neurons
then down-sampled to 1 kHz; spurious connections have been removed, as in [84]. Using
our method, spontaneous events (dark blue) were disentangled from c-webs (orange) to
illustrate their qualitative differences. In Figure [5.4]A, we present an activity time raster
(top panel) and corresponding timeseries of the activity (bottom panel), on which we have
performed a moving average with a At = 100 ms window: y(t) = tA,iBI x(t —t")/At,
where z(t) = Ef\i 10z,0),1 [88]. In Figure |5.4B, we plot logarithmically-binned avalanche
and c-web size probability distributions to demonstrate that while neuronal avalanches
may exhibit approximate power-law scaling, thus suggesting underlying critical behavior,
the use of c-webs reveals potentially quasicritical, non-power-law behavior, as predicted
in [I9]. Although we have not determined whether the network operates at or near the
nonequilibrium Widom line (k, = 1.12 at p, = 10~* for the simulated network), the
qualitative shape of the c-web size distribution agrees with d;; = 1 simulations of the CBM
performed (Figure [5.4B inset), indicating that the activity in Figure is potentially not
critical. Six of the ten data sets examined displayed similar behavior.

To demonstrate that this result is not anecdotal, and to further illustrate this dis-

crepancy between c-webs and avalanches in real data, I have plotted both the c-web and
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Figure 5.4: Application of the c-web method on experimental data. A. Time raster of one
minute of neural network activity recorded from somatosensory cortex, processed to separate
spontaneous events (dark blue) from c-webs (orange). Note that tonically-active neurons
mainly produce spontaneous events. B. Avalanches binned at 1 ms (black) and c-webs
(orange) exhibit different statistical properties and scaling; experimental data qualitatively

agrees with simulations from [19] (inset).
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avalanche size and duration probability distributions using aggregated somatosensory cor-
tex data in Figure Event size probability distributions (Figure ) show a clear
discrepancy between c-webs and avalanches for all but the largest events; event duration
distributions (Figure ) show a clear discrepancy for shorter events. The size distri-
butions appear to be most sensitive to the presence of spontaneous activations, whereas
the duration distributions appear to be most sensitive to the presence of synaptic delays.
Avalanche durations from experimental data followed approximate power laws with expo-
nents in a range of [1.83,3.38] and a median of 2.35; c-web duration distributions only

marginally exhibited power-law behavior.

Distributions of c-web branching fractions determined for the aggregated data were
found to follow an approximate power law with exponent —3.56 + 0.19 (see Figure ),
while neuronal avalanche branching ratios (as determined using Equation for the same
data were roughly Gaussian-distributed about a mean of 0.82 + 0.19 with a standard de-
viation of 0.38 +0.20 (see Figure ) The avalanche branching ratio distribution, being
roughly distributed close to a branching ratio ¢ close to 1, had lent credibility to the critical-
ity hypothesis, which relied on self-organized critical models with critical points at o = 1.
But as demonstrated in this chapter, neuronal avalanches potentially conflate unrelated
activity, and therefore this result may be misleading. The c-web branching fraction distri-
bution, on the other hand, seems to be strongly influenced by the out-degree distribution
(see Figure in Appendix , and thus more closely reflects the features of the network
structure and dynamics. One would expect the average number of descendant activations
(i.e., the c-web branching fraction) to be dominated, at least to some degree, by the network

structure and this is what I have demonstrated here.
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ing ratios (B) from aggregated somatosensory cortex data show very different behavior.
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5.5 Graphical Representations of Causal Webs

Because c-webs can be represented as directed graphs with vertices and edges given by
A(X) and X, respectively, it may be desirable to visualize these graphs. Causal webs will
generally be directed acyclic graphs (DAGs), meaning that a number of topological
ordering algorithms may be employed to produce a visual representation in linear time
[89, 90]. DAGs are best suited to layered graph drawing styles, a.k.a. Sugiyama-style
drawings, which place nodes in horizontal layers with vertices directed downward. Some
algorithms for producing Sugiyama-style drawings include Kahn’s algorithm, depth-first
search algorithms, and Coffman-Graham algorithms, which minimize edge crossings. Gen-
erally, such algorithms constitute injective (i.e., one-to-one), measure-preserving maps of
neuron positions and their activation times, the most trivial and easily understood of which
is essentially a time raster with directed edges indicating causal relations, as in Figure
More complex algorithmsﬂ might be surjective (i.e., onto), non-measure-preserving maps,
which are not as easily understood, but which may produce a more aesthetically pleasing
visual representation (see Figure . In either case, nodes represent individual neuronal

activations and directed edges represent causal relations between activations.

3Such as MATLAB’s digraph function, which I have used here.
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CHAPTER 6

Conclusions and Outlook

In this thesis, I explored complex dynamics of open neural networks and their associated
nonequilibrium phase transitions. I have reviewed the theory of equilibrium and nonequi-
librium phase transitions and self-organized criticality, then presented my work on quasi-
criticality and causal webs. In closing, I summarize my findings, place them within a larger
context, describe their implications, and present potential future research directions. My

central contributions are:

¢ Introduction of the nonequilibrium Widom line framework [19].

e Development of the quasicriticality hypothesis [19].

e Introduction of causal webs [5§].

6.1 The Quasicriticality Hypothesis

The introduction of the quasicriticality hypothesis and the nonequilibrium Widom
line framework has some serious implications for ongoing investigations of critical phe-
nomena in biological systems, and contributes to a longstanding debate on self-organized
criticality (SOC). My work suggests that such systems cannot be critical due to their essen-
tial coupling to an environment. Despite this, biological systems may still operate along a

nonequilibrium Widom line of relative optimality, where their closeness to the critical point
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is determined by the strength of the influence of the environment.

A key concept in the quasicriticality hypothesis is the nonequilibrium Widom line, a
line of maximal dynamical susceptibility, which naturally leads to a set of specific questions
which can be addressed in living neural networks. For example: How does the nonequi-
librium Widom line depend on the spontaneous activation probability ps, the branching
parameter k, and the refractory period 7.7 By what factor is the maximum susceptibility
modified by changes in ps? Most importantly, what mechanisms drive living neural net-
works towards the nonequilibrium Widom line? All of these questions are experimentally
accessible because manipulations of these parameters are readily made possible with the
perfusion of pharmacological agents, adjustments of ionic concentrations [37, 91, or back-
ground stimulation [92), 93] 04] applied to in vitro preparations of neural networks. Note
that in adjusting these parameters, we are manipulating intrinsic timescales of the system.
There are a number of ways living neural networks could adjust these timescales, e.g., as a
result of widespread neuronal activation or synchronization or by changing the balance of

excitation and inhibition.

In developing these concepts, I have made extensive use of the cortical branching model
(CBM), for which I developed a mean-field approximation and calculated its nonequilib-
rium phase diagram, finding three nonequilibrium phases: an absorbing disordered phase,
an active ordered phase, and an oscillatory quasiperiodic phase. The CBM features four
timescales, three of which I manipulated here: (1) the driving timescale associated with
the spontaneous activation probability ps, (2) the relaxation timescale associated with the
branching parameter «, (3) the refractory timescale associated with the refractory period
7r, and (4) the activity transmission timescale, i.e. the time a signal is in transit from its
originating node to its destination node (described in Appendix . The situation where

the driving and relaxation timescales are fully separated, i.e., when ps; = 0, and where the
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activity transmission delays are a single timestep, corresponds to SOC.

This novel framework may serve to explain existing experimental results. For instance,
although there have been numerous reports of power laws resulting from spiking activity in
vitro 71, 195], 90, they are rarely found in vivo [97, 98]. In the context of what is presented
here, in witro preparations could have a much smaller external influence ps; than in vivo
preparations, which would suggest that they operate closer to criticality. And although
the influence of different spontaneous activation probability distributions (e.g. Poisson,
geometric, naturalistic) on the phase diagram or on details of the Widom line is not explored
here, it could be probed experimentally to answer questions relating to the effect of external
stimuli on the brain. Isolated neural networks used for in vitro preparations typically show
intervals of many seconds between network bursts that initiate neuronal avalanches, while
the avalanches themselves last tens to hundreds of milliseconds [99]. This separation of
timescales, which is often given as a requirement for SOC [51], is not clearly seen with
in vivo preparations, where each neural network receives many synaptic inputs from other

intact brain regions.

6.1.1 The Quasiperiodic Phase

In addition to the critical phase transition found to occur when p; = 0, a Neimark-Sacker
bifurcation was found to give rise to an oscillatory quasiperiodic phase when 7. was in-
creased (see Appendix . This transition could be the result of a competition of timescales.
The significance of the quasiperiodic phase in terms of the behavior of living neural networks
has not been fully explored, but it may represent epileptiform activity. Previous studies
have found neuronal refractory periods to increase as a result of the axonal demyelination
associated with multiple sclerosis [100}, 10T, 102]—a disease which is correlated with an

unexplained increased incidence of epileptic seizures [103]. Perfusion of glutamate receptor
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agonists (such as kainic acid, KA) has been found to decrease neuronal refractory periods,
while glutamate receptor antagonists (such as 6-cyano-7-nitroquinoxaline-2,3-dione, CNQX)
were found to increase them [104]. Paradoxically, both KA and CNQX have been used to
induce in vitro seizure-like activity [105) [106]. So while the oscillations observed in sim-
ulations are possibly related to the pathological synchronization typically associated with
epilepsy, we note that synchronization in epilepsy is complex and not yet fully understood

[107).

Technically, one of the key features of this quasiperiodic phase is that, unlike typical limit
cycles in discrete systems, the system never revisits points in a quasiperiodic oscillation and
hence the periodicity of the oscillations is not well-defined. In fact, I have found that the first
Lyapunov exponent was positive and yet the limit cycle was stable; the system exhibits a
sort of “contained chaos”, in which the trajectory visits all points within a restricted region,
without repetition, and while maintaining an oscillatory envelope. I make several attempts

at understanding this behavior in Appendix

6.2 Generalized CBMs

As presented here, the CBM lacks some key features of living neural networks which may
have a significant influence on the model behavior. Two glaring omissions are (1) the
lack of a dynamic network structure, realized in a living neural network with regulatory
mechanisms and synaptic plasticity, and (2) different neuron types, primarily inhibitory
neurons. In living neural networks, the network structure derives from a combination of
neuronal dynamics and external influences, such as sensory stimuli, which may drive a
network towards optimality. I now describe the possible consequences for these omissions

and future developments.
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6.2.1 Network Structure

The influence and importance of the network topology has not been fully explored here. I
have only used irreducible, random directed graphs with fixed in-degrees, partly to facilitate
the development of the mean-field approximation. It would be interesting to explore other
network topologies, including reducible and non-planar directed graphs, and additionally
study numerically and, if possible, develop additional mean-field approximations. In the
spirit of using realistic network topologies, I have developed an as yet untested method to
construct such biologically-inspired networks, presented in Appendix [G] This phenomeno-
logical network model is based on transfer entropy analysis of neural networks, and so it
produces mean-field, time-averaged approximations of living neural network topologies at
best—these networks are thus not expected to produce the self-organizing system we are

looking for.

To address self-organization, it will be necessary to have a model which can self-tune
via biological regulatory mechanisms, e.g., synaptic plasticity and neuronal homeostasis.
The goal would be for such a model to respond in real time to its own dynamics and
the influence of an environment by undergoing flows in parameter space (see Figure .
This situation corresponds to dynamical disorder in the network structure, as opposed to
quenched disorder, and presents a model which gives opportunities to understand how liv-
ing neural networks deviate from optimal behavior due to some pathology. For example,
an epileptic neural network may be suddenly drawn away from quasicriticality along the
nonequilibrium Widom line and towards an attractor within the oscillatory quasiperiodic
phase, thus initiating a seizure. Self-organizing network models which implement Hebbian
learning rules, have been found to self-organize to a critical state [108] and recently, much
more realistic “bottom-up” models have become available, e.g., self-organized recurrent

networks (SORNs) [109] and self-organized cortical models (SOCMs) [110]. These realis-
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tic models, however, often suffer from being too detailed to provide analytically-tractable
results and thus attempts at characterization of their exhibited phases and transitions are
hindered. Simpler “top-down” models which yield analytical results will be key in making

substantial progress.

6.2.2 Neuronal Heterogeneity

Due in part to the aforementioned regulatory mechanisms, living neural networks feature
a high-degree of heterogeneity, which is also not explored here. Some spatial heterogeneity
has been implemented into the CBM in the form of disordered connection strengths, but the
model has no explicit temporal heterogeneity aside from perhaps the spontaneous events
in the p; # 0 case; the branching parameters and refractory periods are homogeneous
throughout the network. Regulatory mechanisms cause these features to change in response
to the recent history of the system, e.g., following a burst of activity, neurons may be less
likely to fire and spread activity, a result of metabolic restrictions within each cell; this
situation could be modeled with a disordered, time-dependent branching parameter for
each node, which will depend on that node’s recent history. Moreover, different neuron
types have not been fully explored and this sort of heterogeneity may lead to new physics.

A generalized CBM with inhibitory nodes is briefly considered in Appendix

The improved understanding of the heterogeneity of noise in neural networks, made
possible by the introduction of causal webs, may allow for theoretical advancements to be
made. For example, as in the case of an Ising spin system with a dichotomous external
magnetic field, additional phases or different critical behavior, such as tricritical points may
appear [16]. Heterogeneity may even have the potential to save the criticality hypothesis
if it can be shown that living neural networks feature extended critical regions, such as

Griffiths phases, which can arise due to spatial and/or temporal heterogeneity [I111, [112].
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transiting back to the nonequilibrium Widom line after sufficient time.
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These Griffiths phases make it possible to optimize biological computation in a broad range
of parameter values, thus obviating the need for fine-tuning, while potentially allowing for

critical phenomena to coexist with environmental influences.

The influence of inhibitory neurons has also not been explored in the CBM, although
a generalization of the CBM which includes the effect of inhibition is briefly developed in
Appendix [E] This improvement could help understand how this form of regulation dynami-
cally alters disorder in a complex system, and what consequences this has for their behavior
and computational optimality. One possibility is that inhibition acts as a sort of fluctuating
bottleneck to the inputs of an environment, not only restraining the response of the network,
but also perhaps adjusting the amount of inherent disorder and optimality [I13]. Although
it is hypothesized that living neural networks employ regulatory mechanisms (e.g., inhibi-
tion, spike-timing-dependent plasticity, refractory periods, and homeostatic adaptation) to
achieve optimization—be it at a critical point or along a Widom line—the disorder itself

may facilitate optimization in other ways such as in the case of Griffiths phases.

6.3 Beyond the Mean Field

Because the dynamical mean-field approximation excludes finite-sized fluctuations, i.e.,
avalanches, we must go beyond the mean field if we hope to analytically examine avalanche
physics and obtain exact avalanche exponents. In statistical physics, the canonical next step
involves applying the Bethe-Peierls approximation—in an artificial intelligence context, this
method has been rediscovered as belief propagation (BP). The mean-field approximation
explored in Section considers a single node for which we determine the probability to
find it in any of the allowed states z € S = {0, 1,2, ..., 7-}; in the Bethe-Peierls approxima-
tion, we consider a single node and its nearest neighbors, computing the probabilities (i.e.,

“marginals” in BP) for each to be in any of the allowed states. This can be accomplished
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by summing over all the possible |S|!*kintkout configurations, but this quickly becomes
computationally intensive; an alternative algorithm may be desired and this is provided
by BP, a message-passing algorithm. For tree-like graphs, BP can compute marginals in
O(1 + kin + kout) time; a generalization of BP to graphs with loops is known as the cavity
method [16, 114]. It is key to note, however, that approaches such as BP must be further
developed to work on directed networks with non-Markov dynamics, such as in the case of

a neural network with activity transmission delays and refractory periods.

6.4 Impact and Potential Applications of Causal Webs

The causal webs algorithm introduced in Chapter [5| uses knowledge of the network struc-
ture and activity transmission delays to separate causally-related neuronal activations,
called causal webs (c-webs), from those which are not, i.e., spontaneous activations [58]. The
structure of c-webs is primarily governed by the network topology and dynamics, whereas
spontaneous events are potentially caused by an external stimulus or the intrinsic proper-
ties of the neurons themselves. This methodology represents a novel approach for analyzing

complex networks in a range of fields and with significant consequences in neuroscience.

Whereas neuronal avalanches had been defined as bursts of activity in adjacent timesteps,
framed by timesteps lacking activity, c-webs depend explicitly on the causal structure of
the activity. The definition of neuronal avalanches overlooks two key features of living
neural networks. First, neural networks are extended open systems with spontaneously
active elements meaning that, as defined, neuronal avalanches may conflate unrelated ac-
tivity from various sources and across a neural network. Secondly, because neural networks
involve disordered synaptic delays, neuronal activity in two adjacent time steps may not be
causally-related; a choice of one bin width may be appropriate for some pairs of neurons,

but not for others. By unveiling the causal structure of neural network activity, c-webs

93



obviate the need to choose the “correct” temporal binning—which can drastically affect
neuronal avalanche statistics [14], 06, [115]—providing a more detailed picture of the under-
lying dynamics, and hence calling for a renewed analysis of existing data and application of

the c-webs method to new experimental data.

The ability to disentangle c-webs from spontaneous events (i.e., noise) allows us to bet-
ter test the quasicriticality hypothesis, as well as admitting new ways to examine the role of
noise and heterogeneity in neural network dynamics. We are now able to examine the nature
of spontaneous events in living neural networks, for example, tonically-active cells might
be identified from their high spontaneous activation probability. This sort of information
could be used to improve simulations by incorporating the spontaneous events directly from
data. Another application is the identification of different classes of neurons. For instance,
because inhibitory neurons exhibit different firing patterns from excitatory neurons, namely
fast-spiking and tonic activation [116, 117], and because we have found tonic activations
to be mostly spontaneous (cf. Figure ), distributions of spontaneous neuronal events
may help identify inhibitory neurons, complementing previously-established methods [118§].
Additionally, an improved characterization of noise in the nervous system may contribute
to our understanding of neurological disorders, for example, it has been suggested that a
reduced signal-to-noise ratio produces inefficient hyperactivation in the prefrontal cortices
of schizophrenics during successful cognitive tasks [I19]. This hypothesis has been sup-
ported by computational models showing that neural network attractors become unstable
with increased noise [120]. Thus c-webs could be used to examine the neural basis of hyper-
frontality for the first time. Causal webs may also provide further insight into the nature of
rapid eye movement sleep, recently been shown to be induced by the activation of inhibitory
neurons [121]. The latter may lead to a decreased signal-to-noise ratio, as in the portions of

Figure dominated by spontaneous events. Our method may also inform understanding
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of the neural network structure beyond the capabilities of currently available methods. In
the case of network undersampling, hidden network cycles might be discovered by employ-
ing our approach in conjunction with population coupling methods [122]. Moreover, c-webs
enable us to better distinguish recurrent from feed-forward neural network dynamics, which
may be important in developing improved mean-field approximations.

Causal webs not only represent a novel method in neuroscience, but a fundamentally
new way of understanding the behavior of complex networks in general, with applicability to
a variety of topics in physics, chemistry, biology, ecology, geology, economics, and sociology,
which merit further investigation. For example, financial networks could be decomposed
into agents that directly interact through exchanges as well as exogenous factors like weather
or inflation and the c-webs method could be used to understand the causal links between
these influences and quantities of interest. In models of disease spreading, such as the SIRS
model, c-webs could potentially differentiate between different sources of infection [123].
Such an approach is likely to be useful whenever considering interacting units, whether
they are people in social networks, species in ecological webs, or protein molecules in a
stochastic environment. A specific application in social media could involve the detection

of Twitterbots and astroturfing [124].

95



APPENDIX A

Simulation and C-Web Algorithm Codes

Using spike-sorted MEA data in conjunction with delayed transfer entropy analysis and

the deterministic causal webs algorithm, we are able to improve model simulations. This

is accomplished by feeding synaptic weights, delays, and spontaneous events from c-webs

analysis into a simulation, as depicted in Figure

MATLAB Cortical Branching Model Code

10

11

12

13

o\

o°

o°

o\

o°

o

cxmodel5.m

gCBM with disordered parameters and activity transmission delays.

INPUTS

weightmat: NxN weighted adjacency matrix—--elements are probabilities

NT: maximum number of timesteps, typically 3.6E6, integer

Taurs: Nx1 vector of refractory periods, integers

spontEvents: Nx1 cell of vectors containing spontaneous activation times

sig.del: NxN synaptic delays matrix, integers

delSDs: NxN matrix of delay ranges, i.e., standard deviations, integers
(zeros mean synaptic delay is known with absolute certainty).

OUTPUTS

asdf: simulation asdf file
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Figure A.1: Flow diagram illustrating the production of data-enhanced simulations using

the c-webs method.
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% No longer optimizes data precision to enhance compatibility with foreign
% code...
% Rashid V. Williams-Garcia 12/2/15
function asdf = cxmodel5 (weightmat,NT, Taurs, spontEvents, sig.del,delSDs)
rng ('shuffle', "twister');
N = length(weightmat) ;
connmat = cell(N,1);
for i=1:N
connmat{i} = find(weightmat (i,:));
end
connects = cellfun (@numel, connmat) ;
asdf = cell(N+2,1);

asdf{end-1} = 1;

asdf{end} = [N NT];
prevZ = zeros(N,1);
t =1;

dt = 0;
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DrivenSites = []; $[driven site,activation time]
%% Begin Simulation
while t<NT
%$Locate avalanche seed nodes and times. First, check for
spontaneous events:
actives = cellfun(@(x) min(x(x>=t)),spontEvents, 'UniformOutput’',0);

if sum(cellfun (@Qany,actives))==0

break
else
actives(cellfun(@isempty,actives)) = {0};
actives = cell2mat (actives);
S = find(actives==t)';
tS = min(actives (actives~=0));

%$The following ensures that earliest activity considered first,
$whether spontaneous or driven. (marked for update)

if isempty(DrivenSites)

dt = tS-t;

t = tS;

S = find(actives==t)"';

actives = S; %actives should be a row vector

else
tD = min(DrivenSites(:,2));
if tS>tD
dt = tD-t;
t = tDh;
actives = DrivenSites (DrivenSites(:,2)==t)"';

elseif tS<tD

dt = tS-t;

t = tS;

S = find(actives==t)"';
actives = S;
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elseif tS==tD

dt = tS-t;

t = tS;

S = find(actives==t)"';

D = DrivenSites (DrivenSites(:,2)==
actives = union(S,D);

end

end
end
$Increment node states appropriately
prevZ (prevz>1l) = prevZ(prevz>1)+dt;
prevZ (prevZ>Taurs) = 0;
actives = setdiff (actives, find(previ>1));
if isempty (actives)

t = t+1;
else

prevZ(actives) = 1;

for i=1:numel (actives)

asdf{actives (i) }=horzcat (asdf{actives (i)}, t);

end

aSponts = intersect (actives, S);

while ~isempty(actives) && t<NT
$remove past drives

if ~isempty (DrivenSites)

DrivenSites = DrivenSites (DrivenSites(:,2)>t, :

end
for j=l:numel (actives)

TargetSites = connmat{actives(j)};

)i

%$roll the die for each outgoing connection:

temp = rand(l,connects(actives(3)));

%$collect the respective weights:
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x = welghtmat (actives (Jj), TargetSites);
temp = (x>temp) .*x;
temp = TargetSites (temp~=0); %$these are the descendants
delaySD = delSDs (actives (j),temp);
at = t+sig.del (actives(j),temp); %activation time
for k=1:numel (temp)
at (k) = at(k)+randi (2xdelaySD (k) +1)-(delaySD (k) +1);
end
at (at<=t) = t+1;
DrivenSites = vertcat (DrivenSites, [temp',at']);
end
g$move the clock:
t = t+1;

%Supdate refractory periods

prevZ(prevz>1l) = prevZ(previ>1l)+1;
prevZ (prevZ>Taurs) = 0;
prevZ(actives) = 2;

%$Find spontaneously active sites at time t:

S = cellfun(Q@(x) find(x==t),spontEvents, 'UniformOutput',0);
S(cellfun(@isempty,S)) = {0};

S = find(cellZmat (S));

%and driven ones:

if isempty(DrivenSites)

D = 1[1];
else

D = DrivenSites (DrivenSites(:,2)==t,1);
end
actives = union(S,D);
actives = setdiff (actives, find(prevz>1));
prevZ(actives) = 1;
aSponts = intersect (actives,S);
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123 if isempty (actives)

124 if ~isempty (DrivenSites)

125 DrivenSites = DrivenSites (DrivenSites(:,2)>t, :);
126 end

127 t = t+l;

128 break

129 else

130 for i=1:numel (actives)

131 asdf{actives (i) }=horzcat (asdf{actives (i)}, t);
132 end

133 if t>=NT

134 break

135 end

136 end

137 end

138 end

139 end

140 end

A.2 MATLAB Causal Webs Algorithm Code

1 % asdfZavlets.m

2 % Utilizes a depth-first search to determine causal webs, their shapes,
sizes, branching fractions, and spontaneous events.

3 % INPUTS

4 % asdf: N+2x1 cell containing spike information

5 % sig.del: NxN synaptic delays matrix

6 % REQUIRED FUNCTIONS: ASDFToSparse.m

7 % 4/19/16 UPDATES:
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10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

o

o°

o

Incorporates cWebs structure from Williams-Garcia et al.
Calculates branching fractions.

Rashid Williams-Garcia 12/10/15

function [cShapes,cWebs,cSizes,bFractions, spontEvents] =

asdf2avlets2 (asdf, sig_-del)

%asdf = asdfCast (asdf); %optional data optimization
[raster,~] = ASDFToSparse (asdf);

%% Main code
N = length (asdf)-2;
NT = asdf{end}(2);
clear asdf
%% Data precision optimization
if NT<278

p = 'uint8"';
elseif NT<2716

p = 'uintle';
elseif NT<2732

p = 'uint32';
else

'double’';

e}
I

end
if NxNT<2"8

p2 = 'uint8';
elseif NT<2716

p2 = 'uintle';
elseif NT<2732

p2 = 'uint32';
else

p2 = 'double';

end
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39

40
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43
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45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

%$determine descendants

connmat = cell(N,1);
for i=1:N
connmat{i} = find(sig.del(i,:));
end
dSD = zeros(size(sig-del));

dSD (sig.del~=0)=2; %std. dev. of delay values (should be an input)
maxDel = max (max(sig.del));
av = 0; %c-web counter
ac = 0; %activation counter
cShapes = cell(1,1);
cSizes = zeros(l);
cWebs = cell(1,1);
bFractions = zeros(1l);
spontEvents = cell(N,1);
%$find times with activity (active times)
aTimes = find(any(raster,1l)~=0)";
while numel (aTimes) ~=0
Stic $for debugging...
dA = diff(aTimes);

%$identify macro-avalanche start and end times:

t0 min (aTimes) ;

tf = aTimes (find(dA>maxDel, 1)) ;
$tf-t0 %$for debugging purposes

if isempty(tf) %this happens if the recording ends mid-activity

tf = max(aTimes);

end

[sites,times] = find(raster(:,t0:tf));

times = times+t0-1;

activations = horzcat (sites, times);

nA = size(activations,1);
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70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

associations = zeros (nA,1l); $activation component associations

cPairs = zeros(l,2,p2); %causal pairs
x = 0; %causal pair counter
for a=1:nA
if associations (a)==0
associations (a) = a;
end
n = activations(a,l);
t0 = activations(a,?2);
%$possible descendants of n and their delays
PDs = connmat{n};

if isempty (PDs) %n doesn't have any outgoing connections!
continue

else

dat = t0O+sig.del (n,PDs);%possible descendant activation times

1lb = dat-dsD(n,PDs);
1b (1lb<=t0) = tO+1;
ub = dat+dSD(n,PDs);
for j=1:numel (PDs)
if ub(3j)>NT
dt = 1b(Jj) :NT;
else
dt = 1b(J):ub(J);
end
temp = find(raster (PDs(3j),dt),1);
if isempty (temp) %$n doesn't branch its activity!
continue

else

$about an order of magnitude faster than ismember...

b = find(activations(:,1)==PDs(]j) &

activations(:,2)==dt (temp));
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100

101

102

103

104

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

x = x+1;
cPairs(x,:) = [atac,b+ac];
if associations (b)==
associations (b) = associations (a);
elseif associations (b)~=b
c = min(associations (a),associations (b));
associations (associations==associations(a))
associations (associations==associations (b))
elseif associations (b)==
error ('How could you let this happen?!"')
end
end
end
end
end
avIDs = unique (associations);
Nav = numel (avIDs) ;
for y=1:Nav
av = av+l;

$find activations which are members of the avalanche:

temp = find(associations==avIDs(y)); %activation indices
avSize = numel (temp) ;

n = activations (temp,1); $neuron IDs

t0 = activations (temp, 2); $timesteps

BR = 0;

c = [];

for i=l:avSize
[row,col] = find(cPairs==temp (i) +ac);
%col is awesome! Numbers of 1's indicate numbers of
$descendants of the activation temp(i); numbers of 2's

%$indicate numbers of ancestors!
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130

131

132

133

134

135

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

end

end

end

aTi

ac

gnu

%to

c = vertcat (c,row); $row indices of associated c-pairs

%$Pick out spontaneous events:

if sum(unique(col))==1 || isempty (col)

spontEvents{n (i)} = [spontEvents{n (i)} cast (t0(i),p)];

end
%Calculate branching fraction:
BR = BR+numel (find (col==1));
end
c = unique(c);
cShapes{av,1} = vertcat (cast([n t0],p));
cSizes(av,1l) = avSize;

if avSize==

cWebs{av,1} = [1;
bFractions (av,1l) = BR; %$should be 0
else
cWebs{av, 1} = cPairs(c,:);
bFractions (av,1l) = BR/avSize;
end
mes = aTimes (aTimes>tf);
= ac+ni;
mel (aTimes) $for debugging
c
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APPENDIX B

On the Quasiperiodic Phase of the CBM

At high values of the refractory period, the mean-field approximation of the CBM (cf.
Section features a peculiar, oscillatory nonequilibrium phase, which may underlie the
occurrence of certain types of seizures and/or other pathological behavior. We will want
to understand the class of phase transition which leads to this quasiperiodic phase and the
conditions under which it occurs, i.e., characterize the quasiperiodic phase and establish
the analytical form of the phase boundary. To further understand this behavior, I initially
applied Rouché’s theorem, yielding inconclusive results. I then calculated the center mani-
fold of the CBM mean-field map in an effort to reduce the dimensionality and examine the
simplified dynamics on this invariant manifold. An additional tool which could help charac-
terize the behavior of the map in the quasiperiodic phase, known as expansion entropy, had
been developed recently, but not yet completely applied to the CBM [125]. These remain
open problems for future study and my hope is that what is presented here will serve as a

seed for future work. For simplicity, only the case ps = 0 was considered.

B.1 Rouché’s Theorem

Because the quasiperiodic phase appears when the stable fixed point in the ordered phase
*

x]_ loses stability, the order parameter for the quasiperiodic transition might reflect the

nature of the eigenvalues of the Jacobian. This loss of stability happens when the eigenvalues
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of the Jacobian transit across the unit circle, from the inside out; indeed, in our case, it
is a complex-conjugate pair of eigenvalues which cross the unit circle at the quasiperiodic
transition, as in a Neimark-Sacker bifurcation. We can attempt to determine when the
number of eigenvalues inside the unit circle drops below 7. by applying Rouché’s theorem,

which can be stated as

Rouché’s theorem
Let K be a bounded region within a domain G, i.e., K C G, with a continuous boundary
OK. 1If there are two holomorphic functions f,g € H(G), where H(G) is the set of

holomorphic functions in G, such that

IF ()] < lg(2)l,

for z € 0K, then f(z) + g(2) and g(z) have the same number of roots in K.

Given the structure of the mean-field Jacobian matrix presented in Equation we expand

its determinant by minors and arrive at an equation for the eigenvalues A € C for any 7. > 2:
T2
psT) =ATTHA= N+ B A" =0, (B.1)
n=0
where A = —(1 — 7,.2%)(262p1p2zt — k(p1 +p2)) + B and B = k2p1pexi? — k(p1 + p2)z}. For
simplicity, we consider the case x > 1 and hence z] = z]_, as given by Equation The
complex unit circle |[A\| = 1 corresponds to the boundary K containing the region |A| < 1.
As an example of the application of Rouché’s theorem, consider the case 7. = 2, where
we know that all the eigenvalues lie within the bounded region. In this case, the above

polynomial becomes

p(N;2) =\ — A\ - B. (B.2)
Choosing f(\) = —AX — B and g(\) = A2, Rouché’s theorem says that p()\;2) should have
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the same number (2) of zeros as A\? within the bounded region || < 1 if
|AX + B| < |\, (B.3)

which can be verified numerically along the boundary |[A| =1 for 1 < k < Kpep ~ 1.61 and
up to kK &~ 3.57. We know the quasiperiodic transition to occur when there are only 7. — 2

zeros inside of the bounded region—the other 2 having crossed over—and so we rewrite

Equation as
=3
PT) =ATTHA=A) + BATT2 4 B Y A" (B.4)
n=0

Choosing f(\) = BA™2 and g(A) = A" "1 (A-\)+B ZZL":_O?’ A", we must find the maximum

value of k for which the following relation is satisfied:

Tr—3
ATTHA= N+ B YA < [BAT?. (B.5)

n=0

It was found that this was never satisfied for the conditions stated here. We must note,
however, that Rouché’s theorem provides a necessary, though not sufficient condition for
the functions f(z)+g(z) and g(z) to have the same number of zeros, and so our application

of Rouché’s theorem appears to be inconclusive.

B.2 Center Manifold Theorem

Another approach to understand the nature of the quasiperiodic phase of the mean-field
system x(k+1) = F[x(k)] is by calculating the center manifold of the linearized mean-field
map:

x(k+1) = Jx(k), (B.6)
where x = (21,2, ...,x;.) and the form of the Jacobian J is given in Equation If
the right-hand side of this equation is C”, i.e., r times continuously differentiable, then the

center manifold theorem guarantees the existence of a finite neighborhood U around

each fixed point x* = (z7_,z]_,...,x]_) in which there is at least one of the following:
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e a unique C" stable manifold, M® € U,

e a unique C" unstable manifold, M"“ € U,

e or a (not necessarily unique) C"~! center manifold, M¢ € U.

Eigenvectors corresponding to eigenvalues A of J with |\| < 1 span the stable eigenspace E*,
whereas eigenvectors corresponding to eigenvalues with |A| > 1 span the unstable eigenspace
E"; these eigenspaces define the manifolds M® and M*", respectively. The center manifold
is defined by eigenvectors corresponding to eigenvalues |A| = 1. A nonlinear coordinate
transformation to a normal form separates these manifolds.

Most importantly, the center manifold is real, two-dimensional, and F-invariant; it
passes through x*, tangent to its corresponding eigenspace E¢, on which J acts as a rotation.
This leaves a (7, —2)-dimensional, F-invariant, real submanifold passing through x* tangent
to the corresponding stable eigenspace F®, on which J acts as a contraction. Locally near
x*, M€ is the graph of a function f : F¢ — E*®. Finally, if zo € U, then the orbit of xg
under F' converges to M€ under iteration of the map.

Next, we perform our coordinate transformation, redefining the fixed point x* as the
origin: x’ = x—x*. The iterated map becomes x'(k+1) = F'[x/(k)] with the corresponding

Jacobian J':

OF,  OF] OF!
oz Oz o oz,
J = 0 1 -~ 0 ) (B.7)

where 2 (k 4+ 1) = F{[2} (k)] This new Jacobian J’ is transformed to real Jordan normal
form by finding the matrix V such that J® = V=1J'V where J¥ is the Jordan normal form

of our transformed Jacobian J'. Supposing the matrix J’ has 7,./2 complex conjugate pairs

110



of eigenvectors of the form u, & iv,, the matrix V is constructed in the following way:

V = [vi|ug|valus] . . ], (B.8)

for z € {1,2,...,7/2}. We then transform our state vectors x’ by the appropriate matrix
operation, i.e., X' = Vy, to arrive at a new, linearized map y — J%y. At this point, we
include the nonlinear portion,

—a(l — ot )2 + zfxh (—2azi_ + b) — azxha’?

0
G(x') = , (B.9)
0
in the original map
x' = Jx + G, (B.10)

where a = k2p1pe and b = k(p1 + p2). After this transformation, we have
y = Jiy + G(y), (B.11)

where G(y) = V71G(x'). We can finally approximate the dynamics on the center manifold
by iterating an initial state vector y(k = 1) and plotting the first two components (y1,y2)
of the resulting y (see Figure . One of the hopes here was that elliptic islands would
appear, as in other cases of quasiperiodicity, however, this was not found.

After having made the coordinate transformation x’ = x — x*, it may be possible to
determine quasiperiodic phase boundary using the characteristic polynomial corresponding

to the transformed Jacobian J':

718F1/ o )\Tr72aF1/
oz} or!

z

OF] B OF]
ox! ox!

z z

AT — AT —..—=A

=0, (B.12)

for any z > 1. We focus on the phase boundary where |A| = 1 and solutions which yield

eigenvalues of the form \ = €’ on the center manifold, and which satisfy the characteristic
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Figure B.1: Quasiperiodic orbits on the center manifold for various values of the refractory
period 7, along kK = K, for a B = 0.5, ps = 0 mean-field approximation of the CBM.
These trajectories are the final 10% iterations of the map after a total of 10° iterations have

been performed.
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polynomial equation. This yields two equations for large 7., one for the real component,

/ / —
cos(Trp) = gi} cos(my — 1) + ;gf} (CSC g sin 2Tr2 3¢ + 1) , (B.13)
1 z

and the other from the imaginary component

/!

. oFy] . 10F!
sin(7,¢) = 890’1 sin(r, — 1) + 3 89:’1
1 z

<cot % — csc % cos 27}27 3¢>> . (B.14)

In principle, one would have to solve these equations at a specified 7, for x, which would

correspond to the quasiperiodic phase boundary.

B.3 Expansion Entropy

It was conjectured that the expansion entropy Hj, as defined in [125], may serve as
an order parameter for the quasiperiodic transition. This application was not pursued to
completion and so may provide a future research project. The quantity Hy is essentially
the average of the sum of positive Lyapunov exponents; when Hg > 0, the trajectories are

chaotic. The expansion entropy is defined as

. InEyi(f,S
Ho(f,S5) = k/lgnook’—(k)’

(B.15)
where fi : M — M is a discrete map which takes a point in the manifold M at an
iteration k and returns it to M at another iteration &', i.e., it is analogous to the quantum
mechanical time-evolution operator. A restraining region S within M, ie., S C M,

contains trajectories of the map after many iterations, ¥’ — oo. In our case, we are interested

in the k;;, = 2 CBM mean-field map in 7, dimensions,

zo(k)kz1(k)(1 — kp1pexi(k))

xl(k)

Ttk = (B.16)

':UTT_I(k)
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and the manifold M, which is an n-simplex A™ of dimension n = 7;.:
A" = {(21,29, ... 2n) ER" [0Sz, <1 A Y m; =1V i} (B.17)
i=1

The quantity Ej x(f,S) is given by

By u(f, S) = M(ls) /S G(D fiv o())dpu(x), (B.15)

where p(.S) is the volume of the restraining region S and G(D fy (z)) is the product of the

singular values of the Jacobian A = D fi ,(z) which are greater than 1, i.e.,

GA) = [ v (B.19)
Va1

where \ are eigenvalues of AT A. If all singular values of A are less than 1, then G(A) = 1.
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APPENDIX C

The Strongly-Driven BTW Model

Here I describe a strongly-driven BTW model which lacks a separation of timescalesﬂ A
thorough examination of this model has not yet been completed, but has been initiated.
In this model, “events” (or “activations”) correspond to topplings, not grain drops. This

strongly-driven two-dimensional BTW model is summarized by the following algorithm:

1. Initialization. Start board in random configuration z; < z**. Set the clock to t = 1 and
prepare spontaneous grain drops by drawing inter-drop intervals Aty from a specified

distribution.

2. Drive. Advance to the time ¢ corresponding to the next spontaneous drop and drop

a grain on a random site i: z; — 2; + 1

3. Relazation. For all sites i with z; > 2", topple one grain to each of its neighboring
sites: z; — z; —4 and zpr(;) = 2pn(;) + 1. Grains are conserved within the bulk, where
each site has four neighbors, but not at the edges, where sites can have as few as two

neighbors. Continue until z; < z** for all sites 1.

4. TIteration. Return to 2.

!For an analysis of the BTW model with a full separation of timescales, refer to Section
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APPENDIX D

Sudden Quench Dynamics

Using a dynamical response approach, it may be possible to extract information regarding
the nature of the state of a living neural network. This approach makes use of critical
slowing down, a phenomena in which the relaxation time of the dynamics 7y in response
to a stimulus diverges for a system at criticality: 79 oc 5, where £ is the correlation length
and z the dynamical critical exponent. Presented here are a set of notes on the application
of this approach to the mean-field approximation of the cortical branching model (CBM) (cf.
Section . It is expected that such an approach would be of use to experiments wherein
a living system is exposed to a precisely-controlled stimulus. We simulate this experimental
arrangement by applying a time-dependent spontaneous activation probability, a sudden
quench (see Figure, to the mean field, then observe the resulting transient dynamics
and estimate the duration of the transient 7y. Recent experiments demonstrate the presence
of a transient, immediately following sudden stimulus onset, during which “supercritical”

dynamics are observed [78].

For different parameter values, we observe the duration of the transient to vary suf-
ficiently to identify the nonequilibrium Widom line and distinct phases of the mean-field
CBM; the transient duration is noticeably longer near and along the nonequilibrium Widom
line. This represents a novel dynamical probe which can be utilized by experimentalists to

reveal proximity to critical or quasicritical states. We estimate the duration of this tran-
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Figure D.1: The spontaneous activation probability is a function of time which starts at
ps = 1076 and, after 500 iterations, suddenly increases to ps = p’, the stimulus intensity.

Here, p,, = 107°.

sient for different parameter values to predict the nature of the response of a living neural
network to stimulus of different stimulus intensities and under different pharmacological con-
ditions. Additionally, this provides further hope for employing the nonequilibrium Widom
line framework and testing the quasicriticality hypothesis in a living system. Avalanche
scaling behavior and adherence to scaling relations will require simulations of the CBM or

estimations beyond the mean field.

Using the ez vivo preparation in [78] as a contextual example, we interpret the sponta-
neous activation probability ps as the intensity (and/or contrast) of the stimulus video and
apply to the mean-field system a sudden quench in p,, from a “resting” value of 107%, as
illustrated in Figure The branching parameter and refractory period can be manipu-
lated experimentally by adjusting levels of excitation and inhibition using pharmacological
agents, although some adjustments may be made dynamically by the homeostatic mech-
anisms of a living neural network in response to levels of activity. Prior to activation of

the stimulus, the mean-field map is allowed to reach the appropriate stable fixed point for
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the specific parameter values. Following activation of the stimulus, the mean-field map
undergoes transient dynamics, during which the density of active nodes x; fluctuates be-
fore reaching a new stable fixed point z]. We identify the duration of the transient period
as the number of time steps required to reach this new fixed point. The duration of the
transient period is estimated by determining the first time step &’ (following the stimulus)
for which the condition |21 (k) — z}| < 107! is satisfied and maintained for all k > k'. If
the condition is not met after a large number K of iterations of the map—as is the case for

the quasiperiodic phase—the duration of the transient period k’ is set to K.

The character of the transient period depends on the parameters of the model (e.g., &,
Tr, Ps, €tc.). For instance, see Figure where we plot the kK = 1.0 fraction of active
nodes as a function of time for 7. = 1 and 7. = 5, while varying the stimulus intensity p/,
between values 1073 and 10~!. Increasing the refractory period 7, to 5 time steps results in
a marked difference in the qualitative behavior of the system during the transient period,
involving more fluctuations of the order parameter. To better understand how the duration
of the transient phase 7y depends on the variables of the model, we plot 7. versus x with 7

on a color axis for stimulus values p, = {107°,107%,1073} (see Figure [D.3).

The location of the nonequilibrium Widom line is indicated by an increase 13 around
k = 1.0 which fades as we increase ps;—the critical phase transition located at x = 1.0 when
ps = 0 is not plotted. In contrast to the nonequilibrium phase diagrams presented in Section
[41] these plots indicate locations of phase transitions in terms of the relaxation timescales of
the mean-field CBM—diverging relaxation times indicate oscillatory or critical dynamics.
While these results may not give precise quantitative predictions, qualitative predictions
of how the transient duration 7y scales with the stimulus intensity p, may be accurate
and useful in determining the nature of the dynamics of a living system, e.g., closeness to

criticality. In Figure [D.4] we vary x, while maintaining 7, = 1, to illustrate how 7y scales
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Figure D.2: When the refractory period is low (A), the model responds “adiabatically” to

the sudden quench. With higher refractory periods (B), the model responds to the sudden

quench by over-shooting the stable fixed point.
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Figure D.3: The relaxation time, i.e., the duration of the transient phase, peaks at the

critical point and along the nonequilibrium Widom line. Compare to Figure
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with the stimulus intensity p/, in this case.
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Figure D.4: The “adiabatic” stimuli intensities result in a different scaling of the relax-
ation time versus the stimulus intensity, which depends on proximity to the nonequilibrium
Widom line. The relaxation time near x = 1 is largest at small values of the stimulus

intensity, due to critical slowing and proximity to the critical point at k = 1 when ps = 0.
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APPENDIX E

Generalized Cortical Branching Models

Here I introduce a family of generalizations of the CBM called generalized cortical branching
models (gCBMs). These models incorporate some more realistic features of living neural
networks, including activity transmission delays and inhibition. In developing these models,

I held the following objectives in mind:

(1) to model the interaction between timescales present in living neural networks, e.g.,

synaptic delays, refractory periods, metabolic timescales, etc.,

(2) to formally establish the so-called “balance of excitation and inhibition” and its rela-

tion to criticality, and
(3) to characterize any additional phases and phase transitions of a more realistic CBM.

I wanted to understand how different timescales in systems far from equilibrium interact
to produce the wealth of behaviors observed in living neural networks. Analytic approaches
would be most valuable in such a endeavor and so this appendix focuses on results from
mean-field approaches—the typical first step in understanding the complex dynamics of a
new model.

The first model in this class, the delayed-transmission CBM (dCBM), incorporates ac-

tivity transmission delays. The second model is the Excitatory /Inhibitory CBM (EICBM)EL

T began developing the EICBM in Heidelberg, Germany at a coffee shop, Coffee Nerd, which had some of
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which incorporates inhibitory nodes able to act directly on excitatory nodes, i.e., via site

inhibition, and those which act on synapses, i.e., via bond inhibition.

E.1 The Delayed-Transmission CBM

I briefly considered a situation where, as in living neural networks, activity transmission
delays play an important role in the dynamics. When we account for this timescale of

interaction with k;, = 1, the mean-field equation (cf. Equation [3.18) becomes
zi(k+1) = <1 — sz(k)> (cx1(k —d+ 1)+ ps)
z=1

2 (k+1)=xz,_1(k), (E.1)

where d is the activity transmission delay. Note that since we are only changing the timescale
of the interactions, we do not change how nodes cycle through states during the refractory
period or the rule requiring nodes be quiescent prior to driven activation. That is, the
timescale of interaction is different, but the timescales of the internal dynamics remain the
same. For values d > 1, the fixed points are unchanged, though the equation for x1(k + 1)
becomes
Tr
zy(k+1) = (1 - sz(k») (cza(k) +ps) (E.2)
z=1
where x4(k) replaces x1(k—d+1) due to the dynamics of the CBM and as long as d < 7,; for
d > 7., the mean-field map becomes non-Markovian. This does, however, have an effect on

the Jacobian. With p, = 0, the Jacobian matrix presented in Equation for example,

becomes
A B B --- B B
1 0 O 0 O
J=]l0o 1 0 --- 0 0], (E.3)
o o0 o --- 1 0

the best cappuccinos I ever had; those nerds really know their espresso!
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when d = 2 and where

;. 6$1(l€+1) B o
B = “oml) = (1 - ;xz(k‘)> — cxa(k). (E.4)

The condition for the fixed point 2] = 0 to lose stability changes subtly from x = 1 to
VK = 1; generally, the condition becomes k14 = 1, which has no noticeable effect on the
location of the fixed point. A thorough examination should be performed in future studies

to determine if any substantial changes occur for k;, > 1.

E.2 The Excitatory/Inhibitory CBM

A major shortcoming of the CBM presented in Chapters [3|and [4]is the absence of inhibitory
neurons. Real neural networks typically include both excitatory and inhibitory influences,
and a “balance” of these influences is often purported to occur at criticality [126, 36, [127]. Of
course, neural network models with inhibition are not new, but stochastic branching models
with inhibition, such as the one presented, are. Intuitively, the excitatory/inhibitory CBM
(EICBM) features inhibitory nodes which can “veto” the influence of excitatory nodes:
excessive excitation stochastically elicits inhibitory effects, effectively altering connection
strengths and the influence of the external stimulus by counteracting excitation.

Previous attempts have been made to determine the nature of the various phases net-
works such as these can exhibit [I12§], but these studies were based on simulations of realistic
models of neurons, such as leaky integrate-and-fire models, and focused on numerics as op-
posed to analytics. What resulted was a qualitative description of the phase diagram and
the phases therein, based on simulations of models with many parameters. Although I was
inspired by the work of Brunel et al., I sought to improve upon it by developing a more gen-
eral, analytically-tractable model with fewer parameters, in order to rigorously characterize
the various phases and transitions between them.

The full EICBM consists of a network of Ng excitatory nodes and N; inhibitory nodes
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(Ng + N; = N, the total number of nodes); excitatory (inhibitory) nodes only produce
excitatory (inhibitory) connections, while all nodes, whether excitatory or inhibitory, can
receive input from either type. As in the CBM, excitatory nodes influence the behavior of
the nodes to which they connect in a stochastic way: at a time step ¢, given an active node
i, a quiescent node j, and a connection from 7 to j, node j will become active in time step
t + 1 with probability F;; in the absence of external stimulation. The state of individual
nodes is described by the dynamical variable z € Z: quiescent nodes are indicated by z = 0,
active nodes by z = 1, and refractory nodes by any z € {2,...,7,.}. What sets the EICBM
apart from the CBM, however, is the presence of inhibitory nodes which can counteract,
or veto, the action of excitatory nodes. There are two mechanisms by which this can be

accomplished, where inhibitory nodes can

1. act directly on other nodes to prevent their activation, and/or

2. selectively disable connections.

We refer to the first mechanism as site inhibition and the second as bond inhibition.

These distinct mechanisms are considered separately in the following sections.

E.2.1 Site Inhibition

This form of inhibition counteracts excitatory influences regardless of the source and we call
this variation on the EICBM the site-inhibition EICBM (or siCBM for short). Biologically,
this may correspond to a hyperpolarizing influence which counteracts any depolarization
in the membrane potential of the postsynaptic neuron. In the EICBM, this is modeled
stochastically, where given excitatory and inhibitory influences to a target node, there is a
veto probability v with which the target node is prevented from activating.

As a first example, consider three nodes in the absence of an external stimulus: two

active nodes ¢ and j, and a quiescent node k; node i is excitatory and node j is inhibitory.
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Connections exist from nodes ¢ and j to k with strengths Pj; and Pj;. If only the connection
from ¢ to k transmits activity, then k becomes active with probability P;;. However, if both
nodes ¢ and j transmit to k, then node k becomes active with probability (1—wv) P, Pji, where
v is the veto probability. In this example, both nodes transmit activity to k, but node j fails
to veto the excitatory influence from ¢ and hence k activates. If we allow for an external
stimulus, then & becomes active with probability (1 — p,)(1 —v) P Pjr + ps(1 — v)zPikij.
Notice that a veto term exists for each excitatory influence and that the external stimulus
ps is assumed to be excitatory.

To develop a mean-field approximation, translational invariance is introduced by en-
suring that each node receives a fixed number of inhibitory (in-degree k;) and excitatory
(in-degree k.) connections. Consider the simplest siCBM, i.e., the one with k. = k; = 1
and 7, = 1, so we have a two-element state space S = {0,1}. The excitatory and inhibitory
nodes have respective connection strengths P, and F;. States of excitatory and inhibitory
nodes are referred to as z. and z;; the state of the representative node is z,; the state of the
system is represented as the 3-tuple z = (2, ze, 2;).

As with the mean-field CBM, first consider the probabilities for z, = 0 to calculate
the probabilities for z, = 1 under the various configurations z; that is, W(z — 1) =
1-W(z — 0), where W(z — z) is short-hand indicating the representative node’s transition
probability into state z given the prior system configuration z. The fraction of excitatory
and inhibitory nodes in any state z € S are respectively referred to as x, and y,: in this

case, g + 1 = yo + y1 = 1. We seek to evaluate the mean-field map

x1(k+1) = zo(k)F(z(t))

y1(k +1) = yo(k) F(z(2)), (E.5)
where k indicates the iteration of the map. Notice that the term F(z(k)) = >, W(z —
1)z, (k)y., (k) is identical for both the excitatory and inhibitory maps since both kinds of
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nodes receive the same input to ensure translational invariance. I will now go through the

various realizations of z in detail.

No Prior Activity This is the most trivial case, in which the initial state is z = (0,0, 0).
Because there is no prior activity to consider, the representative node is subject only to the
influence of the external field, and so W(z — 1) = ps;. The contribution to the activation

probability is then pszoyo.

Active Excitatory Node This is the next simplest case, with initial state z = (0, 1,0).
Consider z — 0: that is, despite there being an active excitatory node, it does not transmit
activity, nor does the external field drive the representative node to activation. Thus we
have W(z — 0) = (1 —ps)(1 — P.) or W(z — 1) = ps+ P.(1 — ps). The contribution to the

activation probability is (ps + Pe(1 — ps))z1yo.

Active Inhibitory Node Now we start with initial state z = (0,0,1) and consider
z — 0. There are three ways for this to occur: (1) the target node does not spontaneously
activate and the inhibitory node does not transmit, (2) the target node does not spon-
taneously activate and the inhibitory node does transmit and does nothing, and (3) the
spontaneous activation is defeated by the inhibitory input. These situations occur with
probabilities (1 — ps)(1 — P;), (1 — ps)P;, and gpsP;, respectively, where g is a constant
describing the coupling between the inhibitory nodes and the external field relative to the
influence the inhibitory nodes have on influences from excitatory nodes; take this to be
g = 1 for simplicity. Thus W(z — 1) = ps(1 — P;) with contribution ps(1 — P;)zoyi. Note
that here, it may be useful to consider the effect an inhibitory node may have on a quiescent
node: an inhibitory node acting on a quiescent node may cause the node become hyper-
polarized which may be represented by states z > 1, already used to represent refractory

states.
Both Input Nodes Active This is the most complicated case, z = (0,1, 1), in which
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there are five ways for z — 0 to occur: (1) the target node does not spontaneously activate
and the inhibitory and excitatory nodes do not transmit, (2) the target node does not
spontaneously activate, the excitatory node fails to transmit, but the inhibitory node does
transmit (doing nothing), (3) the target node does not spontaneously activate, but both
the inhibitory and excitatory nodes transmit, and the inhibition vetoes the excitation,
(4) the excitatory node fails to transmit and the spontaneous activation is vetoed by the
inhibition, and finally (5) both the spontaneous activation and excitation are vetoed by the
inhibition. These situations occur with probabilities (1—p,)(1—F.)(1—P;), (1—ps)(1—F.) P;,
g(1 — ps)P.P;, gps(1 — P.)P;, and g*psP.P;, respectively. Note that we could potentially
have different couplings g with respect to spontaneous activation and excitation, e.g., gs
and g., but I considered only the case g5 = g. = g, for simplicity. And thus the contribution
to the activation probability is [P.(1 — gP;)(1 — ps) + ps(1 — gP;) + g(1 — g) P. Pips|z1y1 or,
with g =1, [Pe(1 = F)(1 = ps) + ps(1 — By)]z1y1.

All together, we have F(z(k)) = ps + (1 — ps)Pex1(k) — P;(ps + (1 — ps)Pex1(k))y1(k),
and the resulting mean-field approximation for the siCBM, in the case k. = k; = 1, is a

two-dimensional discrete iterated map,

z1(k+1) = (1 —21(k))(ps + (1 — ps)Pe1(k) — Pi(ps + (1 — ps) Pew1(k))y1(k))
yi(k+1) = (L= y1(k))(ps + (1 — ps) Pewr (k) — Pi(ps + (1 — ps) Pew1(k))yr(K)).  (E.6)

In the absence of spontaneous activation, i.e., ps = 0, we have F(z(k)) = P.(1—Py1(k))z1(k),

and we see there are three fixed-points x* = (27, y7): x§ = (0,0) and

. ((1+13i)\/176iG (1+P¢)PeiG\/E> EB7)

X+ = YN 2P P

where G = \/ P.+2P(2—-P.)+ PePf. When we perform stability analysis on this map,
we find that the fixed point xj is stable so long as P, < 1, which is nearly always true. We

next consider arbitrary k. and k;.
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Arbitrary Inputs

In our mean-field treatment of the CBM, we found a phase transition only for k;,, > 1, as
so we will be interested in examining cases with arbitrary k. and k;. First, when there are

two excitatory inputs and a single inhibitory input, i.e., ke = 2 and k; = 1:

F(z1,y15k) = gpsv(1 — v)&*pipoxi (k)yi (k)

+ (1= gpsvyr (k) (6(p1 + p2)z1 (k) — K*p1pozi(k)), (E.8)

where kp; and kpo are activity transmission probabilities for the excitatory inputs. For
arbitrary numbers of inputs of either type, we perform a multi-binomial expansion to arrive

at

z11 zdl

(z —0) Z Z Z ) 1)(1—k1)6zl,1“_(7pd)(1—kd)6zd71,1 .

q0k10 k:d()
15~

A8y 00Oy
TTY X [oprmpeses]

7j=1n1=0 Ny =0

where d = ke and m = (1 —¢q) + (1 —k1)d,, 1+ ...+ (1 — kq)0,,1. This is particularly useful

for computational implementations of the siCBM.

Jacobian Matrices

To understand the nature of the phases exhibited by the model, we turn to a generic analysis
of the siCBM Jacobian matrices. The mean-field maps corresponding to an siCBM with an

arbitrary number of excitatory and inhibitory inputs, as well as arbitrary excitatory and
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inhibitory node refractory periods, 7 and 7., respectively, will be of the form

r1(k+1) =z (k) F(x(k),y(k)) y1(k +1) = yo(k)F(x(k),y(k))
zo(k + 1) = z1(k) y2(k +1) = yi (k)
(E.10)
xTr(k + 1) = xTT_l(k) y7~'r (k + 1) = y%r—l(k)'
The corresponding Jacobian matrix will be of the form
A B B C 0 0
1 0 0O 0 O 0
0 1 0 0 O 0
I o .o ’ (E11)
Do --- 0 EF --- F
0 O 0 1 0 0
0 0 0 0 1 0

where A = Oz1(k + 1)/0x1(k), B = 0x1(k + 1)/0z.(k), C = 0x1(k + 1)/0y1(k), D =
0yi1(k+1)/0z1(k), E = 0y1(k+1)/0y1(k), and F = 0y1(k+1)/0yz(k), for z € {2, 7.} and
zZ € {2,7,}. The similarity between this matrix and the original CBM mean-field Jacobian
in Equation [3.17|should be noted; new physics comes from additional, nonzero terms in the
Jacobian, which may be introduced through the action of activity transmission delays or

perhaps metabolic delays, as presented in the following section.

E.2.2 Bond Inhibition

We now turn our attention to the second mechanism mentioned above, wherein inhibition
acts directly and selectively on bonds and not the sites themselves. One of the key findings

from [129] involved the action of somatostatin-expressing (SST) inhibitory interneurons,
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i.e., suppression of excitatory axonal transmission by means of the GABADb presynaptic
receptor. This axo-axonic mechanism can be modeled as a site-to-bond interaction: SST-
expressing inhibitory interneurons act upon synapses inbound on excitatory pyramidal cells.
Consider a pyramidal cell k£ with two inbound connections: one from an SST neuron j and
the other from a fellow excitatory pyramidal cell i. A directed edge exists between the pair
of pyramidal cells with activity transmission probability Pjz, and there is an axo-axonal

connection from neuron j to the synapse between ¢ and k.

In the absence of any activity, the pyramidal cell k becomes active with probability ps
given its quiescence, z; = 0. If the pyramidal cell at ¢ is active, then the cell at k becomes
active with probability ps+ Pix(1—ps). Thus far, there is no distinction to be made between
this interaction in the EICBM and the k;, = 1 mean-field CBM. But now, let us consider
an active inhibitory cell j featuring bond inhibition; if only this cell is active, then the cell
at k becomes active with probability ps, as before, since the depression of the bond 7 — k
has no effect on spontaneous activation, which represents incoming excitation from some
hidden or unidentified source. If, however, both cells at ¢ and j are active, then cell j can
veto the influence of cell ¢ with probability v. Hence, the probability that & becomes active
under these conditions is ps + Pj(1 — v)(1 — ps), or, in other terms, ps + P/, (1 — p,). That
is, node j has the effect of changing the bond strength from P, to P/, = (1 —v)P;. We

summarize the model with the following transition rates:

W (00 — 1) = ps
W (01 — 1) = ps(1 —v) (E.12)
W(10 — 1) = ps + Pir(1 — ps)

W(ll - 1) = ps(l - U) + Rk(l _ps)(l - v) + vPigps
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The resulting mean-field approximation is

21(t+1) = 20(t)(ps + P(L — po)(1 — vy (6)):1 (1)) (E13)

where we have used t to index the iterations of the map. The form of y;(¢) would be
determined by the nature of SST neurons, i.e., their dynamics (e.g., tonic firing) and inputs.
If y1 (t+1) = yo(t) (ps+ P (1—ps) (1—vy1(t))y1(t)), as in the siCBM, then again we would find
that the phase transition occurs at Pj;, = 1. But as detailed in [129], SST neurons tonically
suppress the firing of excitatory pyramidal neurons by utilizing a GABAb metabotropic
transmembrane receptor and hence y(t) might be approximated as a constant, i.e., an
inhibitory analog to ps. When ps = 0, we have two fixed points, including =] = 0, which
is stable up until Py (1 — vy;) = 1, where y; is now a constant: the location of the critical
point has been shifted due to the action of the tonic inhibition.

Moreover, because the inhibitory action of SST involves an additional timescale, i.e.,
the timescale 7¢ involved in the transit of a G-protein to a potassium channel, the states of
excitatory nodes receiving SST inputs will depend on an inhibitory signal sent some time
TG ago, unlike the action of GABAa, which acts immediately. This represents a metabolic
retardation effect. In the mean-field approximation then, we should modify the discrete

map to include these varied influences:

zi(t+1) = f(@1(t), y1(t), 11t — 76)), (E.14)

which would include terms for direct excitation,z;(t), terms for GABAa inhibition, y;(t),
and terms for GABAD inhibition y;(t — 7¢). The term y;(t — 7¢) would introduce new
nonzero elements to the Jacobian and thus this model has potential for the discovery of

new physics based on these metabolic delay effects.
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APPENDIX F

Analysis of Somatosensory Cortex Data

Here I describe some basic features of the ten data sets from [85]. The data were collected in
vitro from organotypic cultures of mouse somatosensory cortex using a 512-microelectrode
array (MEA) with a 60 um electrode spacing and a 20 kHz sampling rate over an hour-
long recording [80], [87]. Using delayed transfer entropy (dTE), we obtain estimates for
synaptic delays between identified neurons along with respective synaptic weights given as
probabilities. From this information, we can infer a number of properties which may be
of interest. All of the results presented in this Appendix are from aggregated data; they
represent a sort of mean-field approximation of the neural network structure and so should
be taken with a grain of salt. Additionally, inhibitory neurons can not be identified by TE
methods, and so neuronal out-degrees do not include those of inhibitory neurons; synaptic

strengths may be biased as well.

Synapses are established by two distinct mechanisms

The probability distribution of synaptic delays P(d;;) aggregated across all 10 data sets,
appeared to be convex in shape (see Figure . To understand this shape, I have made
the assumption that synaptic delays are reliably determined by the length of the synapse,
with an identical and constant synaptic transmission velocity across all synapses. The

shape of P(d;;) then reflects the density of connections as a function of distance between
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Figure F.1: The form of the synaptic delay probability distribution potentially suggests the
presence of two, distinct mechanisms promoting the establishment of short- and long-ranged

synaptic connections.

neurons. Indeed, P(d;;) is well described (with R? = 0.999) by a sum of two exponential
functions f = f; + fo, where f; = Ae % describes the short-ranged distribution and
fo = Bebi the long-ranged distribution, where A = 0.196 +0.005, a = 0.195 £ 0.009 ms~!,
B = (2.3642.67)x107%, and b = 0.312+0.072 ms~!, with 95% confidence intervals. Whereas
short-range (short-delay) synaptic connections might correspond to dendritic connections
made between nearby cells, long-range (long-delay) synaptic connections might correspond

to axonal projections made to distant cells.
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Figure F.2: Aggregated neuronal in- and out-degree distributions, excluding & = 0 neurons,

roughly follow power-law distributions with exponent b = —0.76 &+ 0.03.
Neuronal in- and out-degrees are nearly identically distributed

The probability distribution of neuronal degrees k, both in-degrees and out-degrees, aggre-
gated across all 10 data sets roughly followed a power law with exponent b = —0.76 4= 0.03
(see Figure[F.2)). A scatter plot is used to highlight the variability of the in- and out-degrees

for individual neurons (see Figure .

136



200 T T T
o o)
o) ° ///
o)
3 ° o 7
<5 130T o o /// .
CD.\ © //
% %) (0] o //
~ o) o © e
%0 0 cho o) % &o °0o .7
e © o 0p0 -0
L 100 /5 O © .
457 © oo ° é oo 7 o° ©
o O @ O
_ o)
< 70 ®o
8 ° 5 o)
5:3 00 ® ° o o ©°
o
O i
Z 50 lo) o CQ O
O, 0 ©
o)
oo
0 1 1
100 150 200

Neuronal in-degrees, k;,
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line is of unity slope, serving as a guide to the eye. Annuli above the diagonal have more
outgoing connections than incoming connections; the opposite is true for annuli below the

diagonal.
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APPENDIX G

Generation of Biologically-Inspired Networks

The following procedure has not yet been tested or used in generating networks for sim-
ulations of the CBM, however, it could be particularly useful in a generalized CBM in-
corporating activity transmission delays—I describe various generalized CBM’s in Section
Results from delayed transfer entropy analysis on the 512-electrode MEA data in [84]

presented below have been used as a basis for this recipe.

The synaptic delay probability distribution is approximately a sum of exponentials: a
decaying exponential at short delays and a growing exponential at long delays. The delays
themselves can be interpreted as being proportional to the lengths of neuronal projections,
assuming constant action potential propagation rates. Interpreting the data in this way
might suggest that two different mechanisms are at play in the development of neuronal
projections: one which acts at short range, promoting local connections, and another which
acts at long ranges, promoting distal connections. The long-range behavior may be due to
mechanisms which guide axonal projections to specific targets in the nervous system, in a

process known as growth cone chemotaxis [I30]. The procedure is prescribed as follows:

1. Preheat CPU to 55°C.

2. Choose a number of neurons V.
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3. For each neuron, choose the in- and out-degrees k from the distribution
P(k) = Ag(k + 1), (G.1)

where aj = 0.86 from data. Pre- and post-synaptic neurons are randomly assigned,

with the following normalization:

kmax

D (k+1)"% =1/Ay, (G.2)

k=1

where A = 0.15 from the data, suggesting a maximum node degree of knax = 136,

which should be independent of the system size INV.

4. For each connection, generate associated synaptic delays d;;’s, according to the dis-
tribution
P(di;) = Agle™ % 4 pgeedis), (G.3)

where ps = 1073 is the relative strength of the long-ranged interactions, oy = 0.2 ms™*

is the short-ranged connectivity exponent, and a; = 0.3 ms~! is the long-

ranged connectivity exponent.

5. Assign connection strengths Pj;’s according to the activity transmission delays, i.e.,
according to

Pyj(dij) = AJ) p—— (G.4)

(%)

where 75 = 11 ms and the normalization A’ is chosen to satisfy the condition Equa-

tion B.3] for each node i:
k) -
ou 1

A0 — - -
ding(k) + Td

p

(G.5)
k=1

Some final checks should be performed to validate results of the method, for example, scatter
plots of out-degrees versus in-degrees should be checked against data and the networks can

be checked for the presence of a rich club.

139



1]

BIBLIOGRAPHY

S. Herculano-Houzel, “The remarkable, yet not extraordinary, human brain as a
scaled-up primate brain and its associated cost,” Proceedings of the National Academy

of Sciences, vol. 109, pp. 10661-10668, 2012.

Facebook Inc., “Facebook reports first quarter 2016 results and announces pro-
posal for new class of stock,” 2016. http://investor.fb.com/releasedetail.cfm?

ReleaseID=967167.

Pew Research Center, “6 new facts about Facebook,” 2014. http://pewrsr.ch/

1dm5NmJ.

A. L. Barabasi and Z. N. Oltvai, “Network biology: understanding the cell’s functional

organization,” Nature Reviews Genetics, vol. 5, pp. 101-113, 2004.

C. Zhou, L. Zemanova, G. Zamora, C. C. Hilgetag, and J. Kurths, “Hierarchical
organization unveiled by functional connectivity in complex brain networks,” Physical

Review Letters, vol. 97, p. 238103, 2006.

R. V. Solé and J. M. Montoya, “Complexity and fragility in ecological networks,”
Proceedings of the Royal Society of London B: Biological Sciences, vol. 268, pp. 2039—

2045, 2001.

140


http://investor.fb.com/releasedetail.cfm?ReleaseID=967167
http://investor.fb.com/releasedetail.cfm?ReleaseID=967167
http://pewrsr.ch/1dm5NmJ
http://pewrsr.ch/1dm5NmJ

[7]

[10]

[11]

[13]

[14]

[15]

[16]

J. F. Donges, Y. Zou, N. Marwan, and J. Kurths, “Complex networks in climate
dynamics,” The FEuropean Physical Journal Special Topics, vol. 174, pp. 157-179,

2009.

R. Albert and A. L. Barabasi, “Statistical mechanics of complex networks,” Reviews

of Modern Physics, vol. 74, pp. 47-97, 2002.

P. Bak, K. Christensen, L. Danon, and T. Scanlon, “Unified scaling law for earth-

quakes,” Physical Review Letters, vol. 88, p. 178501, 2002.

D. L. Turcotte and B. D. Malamud, “Landslides, forest fires, and earthquakes: exam-

ples of self-organized critical behavior,” Physica A, vol. 340, pp. 580589, 2004.

F. Y. Wang and Z. G. Dai, “Self-organized criticality in X-ray flares of gamma-ray-

burst afterglows,” Nature Physics, vol. 9, pp. 465-467, 2013.

S. Hergarten, “Landslides, sandpiles, and self-organized criticality,” Natural Hazards

and Farth System Science, vol. 3, pp. 505-514, 2003.

M. E. J. Newman, “Self-organized criticality, evolution, and the fossil extinction
record,” Proceedings of the Royal Society of London B: Biological Sciences, vol. 263,

pp- 1605-1610, 1996.

J. M. Beggs and D. Plenz, “Neuronal avalanches in neocortical circuits,” The Journal

of Neuroscience, vol. 23, pp. 11167-11177, 2003.

H. E. Stanley, L. A. N. Amaral, P. Gopikrishnan, and V. Plerou, “Scale invariance

and universality of economic fluctuations,” Physica A, vol. 283, pp. 31-41, 2000.

H. Nishimori and G. Ortiz, Elements of Phase Transitions and Critical Phenomena.

Oxford University Press, 2011.

141



[17]

[18]

[20]

[24]

[25]

[26]

F. G. Zeng, Q. J. Fu, and R. Morse, “Human hearing enhanced by noise,” Brain

Research, vol. 869, pp. 251-255, 2000.

M. A. Buice and J. D. Cowan, “Field-theoretic approach to fluctuation effects in

neural networks,” Physical Review E, vol. 75, p. 051919, 2007.

R. V. Williams-Garcia, M. Moore, J. M. Beggs, and G. Ortiz, “Quasicritical brain
dynamics on a nonequilibrium Widom line,” Physical Review E, vol. 90, p. 062714,

2014.

P. Bak, C. Tang, and K. Wiesenfeld, “Self-organized criticality: An explanation of

the 1/ f noise,” Physical Review Letters, vol. 59, p. 381, 1987.

P. Bak, How Nature Works: The Science of Self-Organized Criticality. Springer, 1996.

K. Christensen and N. R. Moloney, Complexity and Criticality. Imperial College Press,

2005.

C. Haldeman and J. M. Beggs, “Critical branching captures activity in living neural
networks and maximizes the number of metastable states,” Physical Review Letters,

vol. 94, p. 058101, 2005.

W. Chen, J. P. Hobbs, A. Tang, and J. M. Beggs, “A few strong connections: op-
timizing information retention in neuronal avalanches,” BMC Neuroscience, vol. 11,

p. 3, 2010.

N. Bertschinger and T. Natschliger, “Real-time computation at the edge of chaos in

recurrent neural networks,” Neural Computation, vol. 16, pp. 14131436, 2004.

L. L. Gollo, O. Kinouchi, and M. Copelli, “Single-neuron criticality optimizes analog

dendritic computation,” Scientific Reports, vol. 3, 2013.

142



[27]

[29]

[32]

[35]

O. Kinouchi and M. Copelli, “Optimal dynamical range of excitable networks at

criticality,” Nature Physics, vol. 2, pp. 348-351, 2006.

D. B. Larremore, W. L. Shew, and J. G. Restrepo, “Predicting criticality and dynamic
range in complex networks: effects of topology,” Physical Review Letters, vol. 106,

p. 058101, 2011.

S. Pei, S. Tang, S. Yan, S. Jiang, X. Zhang, and Z. Zheng, “How to enhance the dy-
namic range of excitatory-inhibitory excitable networks,” Physical Review FE, vol. 86,

p. 021909, 2012.

R. Publio, C. C. Ceballos, and A. C. Roque, “Dynamic range of vertebrate retina
ganglion cells: Importance of active dendrites and coupling by electrical synapses,”

PLoS ONE, vol. 7, p. e48517, 2012.

K. Manchanda, A. C. Yadav, and R. Ramaswamy, “Scaling behavior in probabilistic

neuronal cellular automata,” Physical Review E, vol. 87, p. 012704, 2013.

T. S. Mosqueiro and L. P. Maia, “Optimal channel efficiency in a sensory network,”

Physical Review E, vol. 88, p. 012712, 2013.

L. Wang, P. M. Zhang, P. J. Liang, and Q. Y. H., “Enhancement of the neuronal dy-
namic range by proper intensities of channel noise,” Chinese Physics Letters, vol. 30,

p. 070506, 2013.

L. de Arcangelis and H. J. Herrmann, “Learning as a phenomenon occurring in a
critical state,” Proceedings of the National Academy of Sciences, vol. 107, p. 3977,

2010.

M. O. Magnasco, O. Piro, and G. A. Cecchi, “Self-tuned critical anti-Hebbian net-

works,” Physical Review Letters, vol. 102, p. 258102, 2009.

143



[36]

[38]

[40]

[42]

[43]

W. L. Shew, H. Yang, T. Petermann, R. Roy, and D. Plenz, “Neuronal avalanches
imply maximum dynamic range in cortical networks at criticality,” The Journal of

Neuroscience, vol. 29, pp. 15595-15600, 2009.

W. L. Shew, H. Yang, S. Yu, R. Roy, and D. Plenz, “Information capacity and trans-
mission are maximized in balanced cortical networks with neuronal avalanches,” The

Journal of Neuroscience, vol. 31, pp. 55-63, 2011.

G. Solovey, K. J. Miller, J. G. Ojemann, M. O. Magnasco, and G. A. Cecchi, “Self-
regulated dynamical criticality in human ECoG,” Frontiers in Integrative Neuro-

science, vol. 6, p. 44, 2012.

J. M. Beggs, “The criticality hypothesis: how local cortical networks might optimize
information processing,” Philosophical Transactions of the Royal Society of London

A: Mathematical, Physical and Engineering Sciences, vol. 366, pp. 329-343, 2008.

D. Hsu and J. M. Beggs, “Neuronal avalanches and criticality: A dynamical model

for homeostasis,” Neurocomputing, vol. 69, p. 1134, 2006.

B. A. Pearlmutter and C. J. Houghton, “A new hypothesis for sleep: Tuning for

criticality,” Neural Computation, vol. 21, p. 1622, 2009.

V. Priesemann, M. Valderrama, M. Wibral, and M. L. V. Quyen, “Neuronal
avalanches differ from wakefulness to deep sleep—evidence from intracranial depth

recordings in humans,” PLoS Computational Biology, vol. 9, p. €1002985, 2013.

L. de Arcangelis, F. Lombardi, and H. J. Herrmann, “Criticality in the brain,” Journal

of Statistical Mechanics, vol. 2014, p. P03026, 2014.

144



[44]

[45]

[46]

[47]

[51]

[52]

M. Rybarsh and S. Bornholdt, “Avalanches in self-organized critical neural networks:
A minimal model for the neural SOC universality class,” PLoS ONE, vol. 9, p. €93090,

2014.

C. Bédard, H. Kroeger, and A. Destexhe, “Does the 1/f frequency scaling of brain sig-
nals reflect self-organized critical states?,” Physical Review Letters, vol. 97, p. 118102,

2006.

J. Touboul and A. Destexhe, “Can power-law scaling and neuronal avalanches arise

from stochastic dynamics?,” PLoS ONE, vol. 5, p. e8982, 2010.

T. L. Ribeiro, S. Ribeiro, H. Belchior, F. Caixeta, and M. Copelli, “Undersampled
critical branching processes on small-world and random networks fail to reproduce

the statistics of spike avalanches,” PloS ONE, vol. 9, p. €94992, 2014.

V. Priesemann, M. Wibral, M. Valderrama, R. Propper, M. L. V. Quyen, T. Geisel,
J. Triesch, D. Nikolic, and M. H. J. Munk, “Spike avalanches in vivo suggest a driven,

slightly subcritical brain state,” Frontiers in Systems Neuroscience, vol. 8, 2014.

A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-law distributions in empirical

data,” SIAM Review, vol. 51, pp. 661-703, 2009.

M. P. H. Stumpf and M. A. Porter, “Critical truths about power laws,” Science,

vol. 335, pp. 665-666, 2012.

H. J. Jensen, Self-Organized Criticality: Emergent Complex Behavior in Physical and

Biological Systems. Cambridge University Press, 1998.

K. Tillisch, J. Labus, L. Kilpatrick, Z. Jiang, J. Stains, B. Ebrat, D. Guyonnet,

S. Legrain-Raspaud, B. Trotin, B. Naliboff, and E. A. Mayer, “Consumption of

145



[53]

[55]

[58]

[61]

fermented milk product with probiotic modulates brain activity,” Gastroenterology,

vol. 144, pp. 1394-1401, 2013.

L. Onsager, “Crystal statistics. I. A two-dimensional model with an order-disorder

transition,” Physical Review, vol. 65, p. 117, 1944.

M. Henkel, H. Hinrichsen, and S. Libeck, Non-FEquilibrium Phase Transitions.

Springer, 2008.

H. K. Janssen, “On the nonequilibrium phase transition in reaction-diffusion sys-
tems with an absorbing stationary state,” Zeitschrift fir Physik B Condensed Matter,

vol. 42, pp. 151-154, 1981.

P. Grassberger, “On phase transitions in Schlogl’s second model,” Zeitschrift fiir

Physik B Condensed Matter, vol. 47, pp. 365-374, 1982.

L. D. Landau, “On the theory of phase transitions. I.,” Zh. Eksp. Teor. Fiz., vol. 11,

pp- 19-32, 1937.

R. V. Williams-Garcia, J. M. Beggs, and G. Ortiz, “Unveiling causal activity of com-

plex networks,” arXiv preprint:1605.05659, 2016.

D. Dhar and R. Ramaswamy, “Exactly solved model of self-organized critical phe-

nomena,” Physical Review Letters, vol. 63, no. 16, p. 1659, 1989.

S. Pajevic and D. Plenz, “Efficient network reconstruction from dynamical cascades
identifies small-world topology of neuronal avalanches,” PLoS Computational Biology,

vol. 5, p. e1000271, 2009.

D. B. Larremore, M. Y. Carpenter, E. Ott, and J. G. Restrepo, “Statistical properties

of avalanches in networks,” Physical Review F, vol. 85, p. 066131, 2012.

146



[62]

[67]

[70]

[71]

A. Vespignani and S. Zapperi, “How self-organized criticality works: A unified mean-

field picture,” Physical Review E, vol. 57, p. 6345, 1998.

J. P. Sethna, K. A. Dahmen, and C. R. Myers, “Crackling noise,” Nature, vol. 410,

pp. 242250, 2001.

A. Levina, J. M. Herrmann, and T. Geisel, “Dynamical synapses causing self-

organized criticality in neural networks,” Nature Physics, vol. 3, pp. 857-860, 2007.

T. E. Harris, The Theory of Branching Processes. Dover Publications, 1989.

K. Christensen and Z. Olami, “Sandpile models with and without an underlying

spatial structure,” Physical Review E, vol. 48, p. 3361, 1993.

A. Deutsch and S. Dormann, Cellular Automaton Modeling of Biological Pattern For-

mation: Characterization, Applications, and Analysis. Birkhauser, 2005.

M. Girvan, D. S. Callaway, M. E. J. Newman, and S. H. Strogatz, “Simple model of

epidemics with pathogen mutation,” Physical Review E, vol. 65, p. 031915, 2002.

F. Rozenblit and M. Copelli, “Collective oscillations of excitable elements: order
parameters, bistability and the role of stochasticity,” Journal of Statistical Mechanics:

Theory and FExperiment, vol. 2011, p. P01012, 2011.

R. Curtu and B. Ermentrout, “Oscillations in a refractory neural net,” Journal of

Mathematical Biology, vol. 43, pp. 81-100, 2001.

N. Friedman, S. Ito, B. A. W. Brinkman, M. Shimono, R. E. L. DeVille, K. A. Dah-
men, J. M. Beggs, and T. C. Butler, “Universal critical dynamics in high resolution

neuronal avalanche data,” Physical Review Letters, vol. 108, p. 208102, 2012.

147



[72]

[76]

[77]

[79]

S. Papanikolaou, F. Bohn, R. L. Sommer, G. Durin, S. Zapperi, and J. P. Sethna,
“Universality beyond power laws and the average avalanche shape,” Nature Physics,

vol. 7, pp. 316-320, 2011.

L. Xu, P. Kumar, S. V. Buldyrev, S. H. Chen, P. H. Poole, F. Sciortino, and H. E.
Stanley, “Relation between the Widom line and the dynamic crossover in systems with
a liquid-liquid phase transition,” Proceedings of the National Academy of Sciences,

vol. 102, p. 16558, 2005.

A. Zador, “Impact of synaptic unreliability on the information transmitted by spiking

neurons,” Journal of Neurophysiology, vol. 79, pp. 1219-1229, 1998.

H. Matsuda, K. Kudo, R. Nakamura, O. Yamakawa, and T. Murata, “Mutual in-
formation of Ising systems,” International Journal of Theoretical Physics, vol. 35,

pp. 839-845, 1996.

R. T. Wicks, S. C. Chapman, and R. O. Dendy, “Mutual information as a tool for
identifying phase transitions in dynamical complex systems with limited data,” Phys-

ical Review E, vol. 75, p. 051125, 2007.

C. Shannon and W. Weaver, A Mathematical Theory of Communication. University

of Illinois Press, 1948.

W. L. Shew, W. P. Clawson, J. Pobst, Y. Karimipanah, N. C. Wright, and R. Wes-
sel, “Adaptation to sensory input tunes visual cortex to criticality,” Nature Physics,

vol. 11, p. 659, 2015.

J. Pearl, Causality. Cambridge University Press, 2009.

148



[80]

[83]

[84]

[85]

G. Rebane and J. Pearl, “The recovery of causal poly-trees from statistical data,”
(Seattle, Washington), pp. 222-228, Proceedings of the Workshop on Uncertainty in

Artificial Intelligence, 1987.

F. James, Statistical Methods in Experimental Physics. World Scientific, 2006.

S. Ito, M. E. Hansen, R. Heiland, A. Lumsdaine, A. M. Litke, and J. M. Beggs, “Ex-
tending transfer entropy improves identification of effective connectivity in a spiking

cortical network model,” PloS ONE, vol. 6, p. e27431, 2011.

M. Wibral, N. Pampu, V. Priesemann, F. Siebenhiihner, H. Seiwert, M. Lindner, J. T.
Lizier, and R. Vicente, “Measuring information-transfer delays,” PloS ONE, vol. 8,

p. 55809, 2013.

S. Nigam, M. Shimono, S. Ito, F. C. Yeh, N. Timme, M. Myroshnychenko, C. C.
Lapish, Z. Tosi, P. Hottowy, W. C. Smith, S. C. Masmanidis, A. M. Litke, O. Sporns,
and J. M. Beggs, “Rich-club organization in effective connectivity among cortical

neurons,” The Journal of Neuroscience, vol. 36, p. 670, 2016.

S. Ito, F. C. Yeh, N. M. Timme, P. Hottowy, A. M. Litke, and J. M. Beggs, “Spon-
taneous spiking activity of hundreds of neurons in mouse somatosensory cortex slice
cultures recorded using a dense 512 electrode array,” 2016. https://crcns.org/

data-sets/ssc/ssc-3/about-ssc-3|

A. M. Litke, N. Bezayiff, E. J. Chichilnisky, W. Cunningham, W. Dabrowski, A. A.
Grillo, M. Grivich, P. Grybos, P. Hottowy, S. Kachiguine, R. S. Kalmar, K. Mathieson,
D. Petrusca, M. Rahman, and A. Sher, “What does the eye tell the brain?,” IEEE

Transactions on Nuclear Science, vol. 51, p. 1434, 2004.

149


https://crcns.org/data-sets/ssc/ssc-3/about-ssc-3
https://crcns.org/data-sets/ssc/ssc-3/about-ssc-3

[87]

[89]

[90]

S. Ito, F. C. Yeh, E. Hiolski, P. Rydygier, D. E. Gunning, P. Hottowy, N. M. Timme,
A. M. Litke, and J. M. Beggs, “Large-scale, high-resolution multielectrode-array
recording depicts functional network differences of cortical and hippocampal cultures,”

PloS ONE, vol. 9, p. €105324, 2014.

A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing.

Prentice Hall, 1989.

O. Vernet and L. Markenzon, “Hamiltonian problems for reducible flowgraphs,”
pp- 264267, Proceedings of the 17th International Conference of the Chilean Com-

puter Science Society.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms.

MIT Press and McGraw-Hill, 2001.

M. Chiappalone, A. Vato, M. B. Tedesco, M. Marcoli, F. Davide, and S. Martinoia,
“Networks of neurons coupled to microelectrode arrays: a neuronal sensory system for
pharmacological applications,” Biosensors and Bioelectronics, vol. 18, pp. 627-634,

2003.

1. Vajda, J. van Pelt, P. Wolters, M. Chiappalone, S. Martinoia, E. van Someren, and
A. van Ooyen, “Low-frequency stimulation induces stable transitions in stereotypical

activity in cortical networks,” Biophysical Journal, vol. 94, pp. 5028-5039, 2008.

D. E. Gunning, J. M. Beggs, W. Dabrowski, P. Hottowy, C. J. Kenney, A. Sher, A. M.
Litke, and K. Mathieson, “Dense arrays of micro-needles for recording and electrical
stimulation of neural activity in acute brain slices,” Journal of Neural Engineering,

vol. 10, p. 016007, 2013.

150



[94]

[96]

[98]

[100]

D. A. Wagenaar, R. Madhavan, J. Pine, and S. M. Potter, “Controlling bursting in
cortical cultures with closed-loop multi-electrode stimulation,” The Journal of Neu-

roscience, vol. 25, pp. 680-688, 2005.

A. Mazzoni, F. D. Broccard, E. Garcia-Pérez, P. Bonifazi, M. E. Ruaro, and V. Torre,
“On the dynamics of the spontaneous activity in neuronal networks,” PLoS ONE,

vol. 2, p. e439, 2007.

V. Pasquale, P. Massobrio, L. L. Bologna, M. Chiappalone, and S. Martinoia, “Self-
organization and neuronal avalanches in networks of dissociated cortical neurons,”

Neuroscience, vol. 153, pp. 1354-1369, 2008.

G. Hahn, T. Petermann, M. N. Havenith, S. Yu, W. Singer, D. Plenz, and D. Nikoli¢,
“Neuronal avalanches in spontaneous activity in vivo,” Journal of Neurophysiology,

vol. 104, pp. 3312-3322, 2010.

T. L. Ribeiro, M. Copelli, F. Caixeta, H. Belchior, D. R. Chialvo, M. A. L. Nicolelis,
and S. Ribeiro, “Spike avalanches exhibit universal dynamics across the sleep-wake

cycle,” PloS ONE, vol. 5, p. €14129, 2010.

F. Lombardi, H. J. Herrmann, C. Perrone-Capano, D. Plenz, and L. de Arcange-
lis, “Balance between excitation and inhibition controls the temporal organization of

neuronal avalanches,” Physical Review Letters, vol. 108, p. 228703, 2012.

F. N. Quandt and F. A. Davis, “Action potential refractory period in axonal de-
myelination: a computer simulation,” Biological Cybernetics, vol. 67, pp. 545552,

1992.

151



[101]

[102]

[103]

[104]

[105]

[106]

[107]

P. A. Felts, T. A. Baker, and K. J. Smith, “Conduction in segmentally demyelinated
mammalian central axons,” The Journal of Neuroscience, vol. 17, pp. 7267-7277,

1997.

Z. H. Luo, J. X. Chen, Y. M. Huang, H. Q. Yang, J. Q. Lin, H. Li, and S. S.
Xie, “Characterization of signal conductance along demyelinated axons by action-
potential-encoded second harmonic generation,” Journal of Innovative Optical Health

Sciences, vol. 7, p. 1330003, 2014.

B. J. Kelley and M. Rodriguez, “Seizures in patients with multiple sclerosis,” CNS

Drugs, vol. 23, pp. 805-815, 2009.

R. Dawkins and W. F. Sewell, “Afferent synaptic transmission in a hair cell organ:
pharmacological and physiological analysis of the role of the extended refractory pe-

riod,” Journal of Neurophysiology, vol. 92, pp. 1105-1115, 2004.

A. Bragin, J. Engel, C. L. Wilson, I. Fried, and G. W. Mathern, “Hippocampal and
entorhinal cortex high-frequency oscillations (100-500 Hz) in human epileptic brain
and in kainic acid-treated rats with chronic seizures,” Epilepsia, vol. 40, pp. 127-137,

1999.

W. van Drongelen, H. C. Lee, M. Hereld, Z. Chen, F. P. Elsen, and R. L. Stevens,
“Emergent epileptiform activity in neural networks with weak excitatory synapses,”
IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 13,

pp. 236-241, 2005.

P. Jiruska, M. de Curtis, J. G. R. Jefferys, C. A. Schevon, S. J. Schiff, and K. Schindler,
“Synchronization and desynchronization in epilepsy: controversies and hypotheses,”

The Journal of Physiology, vol. 891, pp. 787-797, 2013.

152



[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

S. Bornholdt and T. Rohl, “Self-organized critical neural networks,” Physical Review

E, vol. 67, p. 066118, 2003.

A. Lazar, G. Pipa, and J. Triesch, “SORN: a self-organizing recurrent neural network,”

Frontiers in Computational Neuroscience, vol. 3, p. 23, 2009.

Z. Tosi and J. M. Beggs, “Building a microcircuit from scratch: Introducing the first

complete self-organizing cortical model,” unpublished.

F. Vazquez, J. A. Bonachela, C. Lépez, and M. A. Muifioz, “Temporal Griffiths

phases,” Physical Review Letters, vol. 106, p. 235702, 2011.

P. Moretti and M. A. Munoz, “Griffiths phases and the stretching of criticality in

brain networks,” Nature Communications, vol. 4, 2013.

R. Zwanzig, “Dynamical disorder: Passage through a fluctuating bottleneck,” The

Journal of Chemical Physics, vol. 97, p. 3587, 1992.

M. Mézard and A. Montanari, Information, physics, and computation. Oxford Uni-

versity Press, 2009.

D. Plenz and H. G. Schuster, Criticality in Neural Systems. Wiley Weinheim, 2014.

T. F. Freund and G. Buzsidki, “Interneurons of the hippocampus,” Hippocampus,

vol. 6, p. 347, 1996.

H. Hu, J. Gan, and P. Jonas, “Fast-spiking, parvalbumin® GABAergic interneurons:

From cellular design to microcircuit function,” Science, vol. 345, p. 1255263, 2014.

P. Barthé, H. Hirase, L. Monconduit, M. Zugaro, K. D. Harris, and G. Buzsaki,
“Characterization of neocortical principal cells and interneurons by network interac-

tions and extracellular features,” Journal of Neurophysiology, vol. 92, p. 600, 2004.

153



[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

G. Winterer and D. R. Weinberger, “Genes, dopamine, and cortical signal-to-noise

ratio in schizophrenia,” TRENDS in Neurosciences, vol. 27, p. 683, 2004.

E. T. Rolls, M. Loh, G. Deco, and G. Winterer, “Computational models of schizophre-
nia and dopamine modulation in the prefrontal cortex,” Nature Reviews Neuroscience,

vol. 9, p. 696, 2008.

F. Weber, S. Chung, K. T. Beier, M. Xu, L. Luo, and Y. Dan, “Control of REM sleep

by ventral medulla GABAergic neurons,” Nature, vol. 526, p. 435, 2015.

M. Okun, N. A. Steinmetz, L. Cossell, M. F. Iacaruso, H. Ko, P. Barthé, T. Moore,
S. B. Hofer, T. D. Mrsic-Flogel, M. Carandini, and K. D. Harris, “Diverse coupling

of neurons to populations in sensory cortex,” Nature, vol. 521, p. 511, 2015.

R. M. Anderson and R. M. May, “Population biology of infectious diseases: Part I,”

Nature, vol. 280, p. 361, 1979.

J. Ratkiewicz, M. D. Conover, M. Meiss, B. Gongalves, S. Patil, A. Flammini, and
F. Menczer, “Truthy: mapping the spread of astroturf in microblog streams,” (New
York, New York), p. 249, Proceedings of the 20th international conference companion

on world wide web, 2011.

B. R. Hunt and E. Ott, “Defining chaos,” Chaos, vol. 25, p. 097618, 2015.

C. W. Shin and S. Kim, “Self-organized criticality and scale-free properties in emer-

gent functional neural networks,” Physical Review E, vol. 74, p. 045101, 2006.

S. S. Poil, R. Hardstone, H. D. Mansvelder, and K. Linkenkaer-Hansen, “Critical-state
dynamics of avalanches and oscillations jointly emerge from balanced excitation/in-

hibition in neuronal networks,” The Journal of Neuroscience, vol. 32, p. 9817, 2012.

154



[128] N. Brunel, “Dynamics of sparsely connected networks of excitatory and inhibitory

spiking neurons,” Journal of Computational Neuroscience, vol. 8, p. 183, 2000.

[129] J. Urban-Ciecko, E. E. Fanselow, and A. L. Barth, “Neocortical somatostatin neurons

9

reversibly silence excitatory transmission via GABAD receptors,” Current Biology,

vol. 25, p. 722, 2015.

[130] D. Mortimer, T. Fothergill, Z. Pujic, L. J. Richards, and G. J. Goodhill, “Growth

cone chemotaxis,” Trends in Neurosciences, vol. 31, pp. 90-98, 2008.

155



Research Interests

Professional Affiliations

Education

Doctoral Thesis

Research

Postdoctoral

Graduate

Post-Baccalaureate

Undergraduate

CURRICULUM VITAE

Rashid V. Williams-Garcia

& rwgarcia@indiana.edu
o nonequilibrium statistical physics o critical phenomena
o neural networks o complex systems
The American Physical Society.

Doctor of Philosophy, Physics, [ndiana University Bloomington.

Bachelor of Science, Physics, University of California Los Angeles.

title: Phase Transitions in Living Neural Networks

advisors: Prof. John M. Beggs and Prof. Gerardo Ortiz

Postdoctoral Scholar, University of Pittsburgh,
Prof. G. Bard Ermentrout, Department of Mathematics,
Prof. Nathan N. Urban, Department of Neurobiology.

Research Assistant, University of Indiana Bloomington,
Prof. Gerardo Ortiz, Department of Physics.

Research Assistant, University of Indiana Bloomington,
Prof. John M. Beggs, Department of Physics.

Research Assistant, University of California Los Angeles,
Prof. Dolores Bozovic, Department of Physics & Astronomy.

Research Assistant, University of California Los Angeles,
Prof. George Griiner, Department of Physics & Astronomy.

Research Assistant, University of California Los Angeles,
Prof. James Rosenzweig, Department of Physics & Astronomy.

2014—present

2008-2016

2003—2006

2016—present

2012—2016

2009—2016

2005—2008

2005—-2006

20042005



Awards and Honors Training in the Neurobiology of Neurological Disease T32, 2016
University of Pittsburgh, National Institutes of Health.

Grand-in-Aid of Doctoral Research, Indiana University Bloomington, 20I5
The University Graduate School.

McCormick Science Grant, Indiana University Bloomington, 2015
College of Arts & Sciences.

Earl Studevant Graduate Fellowship, Indiana University Bloomington, 2014
Department of Physics.
Lilly Biocomplexity Fellowship, Indiana University Bloomington, 2009—-2010

Biocomplexity Institute.

Graduate Scholars Fellowship, Indiana University Bloomington, 2008
The University Graduate School.

Post-Baccalaureate Research & Education Program, 2006-2008
University of California Los Angeles, National Institutes of Health.

Dean’s Honors List, University of California Los Angeles, 2006
College of Letters & Science.

Fellows Award, University of California Los Angeles, 2006
Center for Academic & Research Experience.

Programming o MATLAB o Mathematica
o C/C++ o Bash
o TORQUE
Languages English: C2 Fluent
Spanish: CI Native speaker

German: A2




Publications

Posters

Teaching

Outreach

[1] R.V.Williams-Garcfa, J. M. Beggs, and G. Ortiz, “Unveiling causal activity of

complex networks,” arXiv preprint:1603.05659, 2.016.

[2] R.V.Williams-Garcfa, M. Moore, J. M. Beggs, and G. Ortiz, “Quasicritical brain
dynamics on a nonequilibrium Widom line,” Physical Review E, vol. 90, p. 062714,

2014.

Criticality in Biology, Quasicriticality and Optimal Brain Dynamics,

Dresden, Germany.

Dynamics Days XXXIV,
Quasicriticality and Optimal Brain Dynamics,
Houston, Texas.

Annual Biomedical Research Conference for Minority Students,

Overstimulation Recovery in Bullfrog Hair Cells,
Austin, Texas.

Grader: Computational Physics,
University of Indiana Bloomington.

Associate Instructor: General Physics I/11,
University of Indiana Bloomington.

Associate Instructor: Physics for Elementary Teachers,
University of Indiana Bloomington.

Mentor: Groups Program STEM Initiative,
Indiana University Bloomington.

Volunteer: Physics Department Open House,
Indiana University Bloomington.

Mentor: URC-CARE Research Mentorship Program,
University of California Los Angeles.

Vice President: Society of Physics Students,
University of California Los Angeles.

Apr. 2015

Jan. 2015

Nov. 2007

2014

2010—2014

2009—201I10

2012—2014

2008-2013

2007—2008

2005



	Phase Transitions in Living Neural Networks
	Introduction
	Elements of Phase Transitions
	Equilibrium Transitions: The Ising Model
	A Mean-Field Approximation
	Landau Theory

	Nonequilibrium Transitions: Directed Percolation
	Mean-Field Directed Percolation


	Self-Organized Criticality
	The Bak-Tang-Wiesenfeld Model
	The Random-Neighbor Mean-Field Approximation

	The Cortical Branching Model
	Formal Description
	Cellular Automata Rules
	Avalanche Shape
	Avalanche Branching Ratio

	A Mean-Field Approximation of the CBM

	The Quasicriticality Hypothesis
	The Strongly-Driven CBM
	Quasicriticality in the Mean-Field CBM
	The Nonequilibrium Widom Line
	Simulation of Avalanche Physics
	Optimal Information Transmission and the Widom Line


	Causal Webs: Unveiling Dynamical Correlations
	Mathematical Formalism
	Tests of the Method
	Determining the Network Structure: Transfer Entropy
	Application to Experimental Data
	Graphical Representations of Causal Webs

	Conclusions and Outlook
	The Quasicriticality Hypothesis
	The Quasiperiodic Phase

	Generalized CBMs
	Network Structure
	Neuronal Heterogeneity

	Beyond the Mean Field
	Impact and Potential Applications of Causal Webs

	Simulation and C-Web Algorithm Codes
	MATLAB Cortical Branching Model Code
	MATLAB Causal Webs Algorithm Code

	On the Quasiperiodic Phase of the CBM
	Rouché's Theorem
	Center Manifold Theorem
	Expansion Entropy

	The Strongly-Driven BTW Model
	Sudden Quench Dynamics
	Generalized Cortical Branching Models
	The Delayed-Transmission CBM
	The Excitatory/Inhibitory CBM
	Site Inhibition
	Bond Inhibition


	Analysis of Somatosensory Cortex Data
	Generation of Biologically-Inspired Networks
	Bibliography
	Curriculum Vitae

	CV
	Research Interests
	Professional Affiliations
	Education
	Doctoral Thesis
	Research
	Postdoctoral
	Graduate
	Post-Baccalaureate
	Undergraduate

	Awards and Honors
	Programming
	Languages
	Publications
	Posters
	Teaching
	Outreach




